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Abstract

We design and train a composition of neural network modules that predicts robotic
grasp success based on tactile sensor measurements and natural language prompts
identifying the object. We use a Franka Emika Panda robot arm equipped with
two DIGIT sensors for grasping and language descriptions generated by chatGPT.
Our short-term goal is to utilize this approach to improve the accuracy of a grasp
stability estimator. The longer-term goal of this work is to enhance haptically
driven robot control with language-based context, i.e. task-relevant information
which might not be robustly inferred from vision.

1 Introduction

Multiple researchers have proposed successful approaches to solve the problem of robotic grasp-
ing [13]. Previous work has been dedicated mainly to vision [6], haptics [12] or a combinations of
both modalities [3]. However, in interactive scenarios, relevant information is often encoded in a third
modality, language. Since natural language commands often implicitly contain context cues, they can
be a valuable source of knowledge, especially in situations where other sensors may be unreliable or
unavailable. Thanks to large language models, the use of natural language in robotic manipulation
and navigation has become more accessible. Various projects [16, 1, 17] have focused on processing
and implementing high-level natural language commands [11, 19]. In contrast to projects like [1]
or [17], we do not aim to structure our task through natural language commands but instead seek to
utilize context that such language commands might contain. Other projects mainly rely on vision for
the robot’s perception. In situations where factors like poor lighting, occlusion, and self-occlusion
hinder vision, these models still struggle. Humans can rely on their sense of touch to navigate such
situations, an approach several papers have applied successfully [9, 12, 18, 5, 7, 8]. Building upon
previous work, we explore the combination of natural language as a source of context information,
provided by a user, and haptics as a robust perceptual modality controlled by the robot. We evaluate
our modeling approach on the exemplary task of grasp stability estimation [2, 5].

Our preliminary experiments have been conducted on a small set of six household objects. We train a
neural network model to predict the stability of a grasp based on tactile sensor measurements and a
basic natural language prompt. To this end, we first generate a dataset in simulation, which contains
tactile sensor readings from roughly 53,000 grasp attempts on the six household objects. We then
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used chatGPT to generate a total of 420 short object descriptions, i.e. multiple descriptions for each
one of the six objects. During training and testing, for each tactile sensor measurement, we randomly
select an appropriate description from the object-specific set.

Our evaluations have shown that the use of randomly selected natural language context yields similar
performance as a baseline model utilizing only tactile measurements. This result implies that not
all language descriptions are useful and that the tactile data already contains significant object
information. We plan on extending our dataset to contain more objects that vary in weight, surface
friction, and rigidity, allowing us to capture task-relevant features that have so far been ignored. Our
long-term goal is to achieve more efficient and flexible robot control with both tactile and language
information.

2 Dataset

Our dataset consists of two components generated for six household objects: 1) A set of robot grasps
Dg and 2) A set of corresponding language descriptions Dl of each object generated with chatGPT.
We used the PyBullet [4] simulation environment to generate a dataset of grasps for six different
household objects. To record our tactile sensor readings we chose the Tacto simulation interface [20]
to simulate two DIGIT [10] sensors. The sensors are mounted on the fingers of a Franka robot model
taken from [14].

The robot grasp dataset Dg = {Dg1 , Dg2 , Dg3 , Dg4 , Dg5 , Dg6} contains six data subsets Dgi :
i ∈ {1, . . . , 6} each containing interactions with a single object. Each data subset is a collection
of data points Dgi = {(xgi1 , ygi1), . . . , (xgin , ygin)} : i ∈ {1, . . . , 6} with n ≈ 8900. A single
datapoint contains two tactile images xgij : i ∈ {1, . . . , 6}, j ∈ {1, . . . , n} and a corresponding
binary classification label ygij : i ∈ {1, . . . , 6}, j ∈ {1, . . . n} describing if the grasp was successful
ygij = 1 or unsuccessful ygij = 0. We do not include any object-relative hand pose information as
the object pose and overall geometry is assumed to be unknown.

We use Pybullet [4] as our simulation environment together with the simulation interface Tacto
[20], which Meta provides to simulate its DIGIT [10] sensors. We use the Franka robot
model from [14] with a custom finger design to record grasp interactions with a Bottle, Rub-
ber Duck, Hair Dryer, Soda Can, Microphone, and Digital Camera, generating the six data sub-
sets {Dg1 , Dg2 , Dg3 , Dg4 , Dg5 , Dg6}. Example images of the data collection setup and some
of the tactile sensor readings can be found here: https://anonymous.4open.science/r/
Additional-Resources-B8ED/README.md

Each grasp is performed from the top down, by moving to a pre-grasp location above our desired
grasp point and then moving downwards along the global z-axis. Grasp points are uniformly sampled
within the object’s bounding box. The gripper’s rotation r around the global z-axis is also uniformly
sampled with r ∈ (0◦, 180◦).

To generate ground truth data, we save the tactile profile xgij after grasping and evaluate whether or
not the grasp was successful by attempting to lift the object. We do this by comparing the location of
the grasped object before and after the lift movement. If the difference in position along the global
z-axis is sufficiently similar to the lift distance ygij = 1 otherwise ygij = 0. After each full grasp
interaction, the object and robot poses are reset.

The language dataset Dl contains approximately 70 descriptions of each of the six objects. The
descriptions are usually one to two-word names and synonyms for the object in question including
both elaborate descriptions such as "picture-taking device" as well as short terms such as "cam".

We combine the language and tactile modalities during training and testing by randomly selecting a
description from the object-specific subset of language descriptions for each grasp sample.

Since most grasp attempts fail due to either missing the object completely, colliding with it before a
grasp could be established, or slipping off of the object during the lift, the dataset resulting from this
process is imbalanced. Only about 5% of all grasp attempts in the mixed dataset are successful, with
success rates between 7.8% for Ds4 (Soda Can) and 2.5% for Ds3 (Hair Dryer) for the object-specific
sub-datasets.
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(a) The Grasp Success Classifier uses the fea-
ture vector extracted from the tactile image and
the feature vector extracted from the natural
language prompts to classify if the grasp will
be successful. The baseline model has the same
structure albeit without being provided the nat-
ural language embedding

(b) The Natural Language Classifier maps nat-
ural language prompts onto a 6D feature vec-
tor representing the six possible object classes.
This is done by extracting a natural language
embedding from the pre-trained model CLIP
[15] and feeding it through three fully con-
nected layers before applying a softmax func-
tion

(c) The Tactile CNN extracts tactile features from two tactile RGB images generated by the
DIGIT [10] sensors that the robot is equipped with. The RGB channels of each image are
appended, resulting in a 6-channel input image. An initial average pool reduces the dimensions
of each image before it is processed by three 2D convolutional layers. After each convolutional
layer, we apply max pooling. Finally, an adaptive average pool is used to map the feature
vector to a universal size that can be fed into the Grasp Success Classifier.

Figure 1: The three model components. (a) an overview of the entire model, (b) the structure of the
NLP Classifier, and (c) the architecture for the tactile CNN

3 Models

We compare a baseline model, which classifies grasp success based entirely on tactile data, and an
NLP-supported model which is given a natural language prompt in addition to the tactile data. Both
models have the same feature extraction network encoding DIGIT’s tactile images into a feature
vector (see Section (c) of Figure 1).

We use ReLU as non-linear activation function and batch normalization for regularization. The
flattened feature vector generated by this model is then fed into the Grasp Success Classifier as seen
in section (a) of figure 1.

While the baseline classifier works with only this feature vector, we append a six-dimensional natural
language feature vector for our NLP-based classifier. To generate this vector we use CLIP [15],
specifically the "ViT-L/14" model, as a pre-trained NLP unit to extract our initial prompt embeddings.
We selected CLIP as the network is trained on vision and language data and may therefore be able to
capture some geometric context within the language embedding. The embeddings produced by CLIP
are then processed by the Natural Language Classifier shown in section (b) of figure 1. The result is a
six-dimensional vector with each dimension corresponding to one of the six objects. We chose to
further process the CLIP embeddings to ensure that the Natural Language Classifier encodes which
object is currently being grasped.

Both the NLP-based model and our baseline then use a fully connected network to classify whether
a grasp was successful or not based on their respective feature vector inputs. The structure of this
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Figure 2: Confusion matrices for the experiments conducted on the full simulated dataset. On the left
is the confusion matrix for our baseline model, while the right confusion matrix was generated by our
NLP-supported classifier. The confusion matrices were calculated by averaging over all five folds
of our cross-validation scheme. We can see that the baseline is slightly more biased toward positive
predictions than the NLP-supported classifier but these differences are minimal.

network can be seen in section (a) of figure 1. Note that the "NLP Classifier" module shown in this
image is missing for our baseline model.

3.1 Training

Both the baseline approach and the NLP-based grasp classifier are trained using weighted Negative
Log Likelihood and Stochastic Gradient Descent. The initial learning rate is 0.002 to which we apply
exponential decay with a gamma of γ = 0.9 every epoch. The model is trained for 50 epochs. We use
a pre-trained Natural Language Classifier. During the training of the NLP-based model, we freeze the
weights belonging to the underlying CLIP feature extractor but train the rest of the model.

For our NLP-based model, we pre-train the Natural Language Classifier to identify object classes
based on input prompts. This pre-training is conducted with a cross-entropy loss and stochastic
gradient descent as the optimizer. The Learning rate is set to an initial value of 0.0002 and decays
exponentially every epoch with a gamma value of 0.99. Training is conducted on the entire prompt
dataset over a total of 200 epochs. During training, we regularize the model by applying Dropout to
the first two linear layers.

4 Results and Conclusions

We evaluate and compare our models based on their f1 score to offset the highly imbalanced dataset.
The model is trained in a 5-fold cross-validation scheme. The results presented are calculated by
taking the mean performance over all five cross-validation folds.

Performance on mixed dataset Since we aim to explore if and how integrating natural language
context into a tactile grasping model is beneficial, we first tested how our NLP-supported classifier
performs compared to our baseline. We find that the latter peaks at an f1 score of ≈ 0.745, while the
former improves only marginally on this result with an f1 score of ≈ 0.747.

Performance on single object datasets Along with the bimodal inputs, we trained and evaluated
our baseline model on the data subsets {Ds1, Ds2, Ds3, Ds4, Ds5, Ds6}. We then averaged the
performance of the six resulting models and compared the mean performance of those models with
the baseline performance on the mixed dataset Ds. The experiment shows that the mean f1 score of
the six single-object models reaches a peak f1 score of 0.746, which is not a significant improvement
over the baseline. This implies that the baseline is already as good as a collection of models that
are each fitted to only one object shape. The results suggest that the tactile information is already
capturing a large amount of object information, and the language does not help to provide more useful
context. It may be useful to identify objects that have similar grasps in terms of tactile observations,
but different grasp outcomes, e.g., grasping a small marble versus grasping the spherical tip of a
drumstick.

4



In conclusion, the NLP-supported model currently does not significantly outperform our baseline
on the simulated dataset. We believe that using more realistic objects varying in weight, surface
friction, and/or rigidity will give us the opportunity to encode more relevant features in the language
component of our dataset. The features we currently encode could also become more relevant if we
change the task at hand from simply predicting grasp stability to generating full grasping solutions.
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