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Training Testing in Real World

Figure 1: We propose Robot Synesthesia, a novel visuotactile approach to perform in-hand object
rotation with visual and tactile modalities.

Abstract

Executing contact-rich manipulation tasks necessitates the fusion of tactile and
visual feedback. However, the distinct nature of these modalities poses signifi-
cant challenges. In this paper, we introduce a system that leverages visual and
tactile sensory inputs to enable dexterous in-hand manipulation. Specifically,
we propose Robot Synesthesia, a novel point cloud-based tactile representation
inspired by human tactile-visual synesthesia. This approach allows for the simul-
taneous and seamless integration of both sensory inputs, offering richer spatial
information and facilitating better reasoning about robot actions. Comprehensive
ablations are performed on how the integration of vision and touch can improve
reinforcement learning and Sim2Real performance. Our project page is available
at https://yingyuan0414.github.io/visuotactile/.

1 Introduction

In everyday life, humans effortlessly perform complex manipulation tasks, intuitively using a combi-
nation of vision and touch. Considering the intricate task of threading a needle, we begin by visually
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locating the needle’s eye and estimating its size. Holding the needle steady in hand, we use touch
information to guide the thread. Our visual sensing guides us in aligning the thread with the needle’s
eye, while it’s the sense of touch from our fingertips that helps us feel the thread’s position, even
when it’s occluded for our eyes to discern accurately. This synergy of vision and touch enables us to
interact with our environment with remarkable flexibility and great robustness against occlusion.

Yet, for robots tasked with similar manipulation tasks, achieving this level of sophistication remains a
challenge. There are two primary hurdles that stand in the way of replicating the same level of synergy
for robot learning algorithms. (i) Tactile and visual modality are distinct in nature. Tactile information
is typically sparse and low-dimensional, captured from distinct tactile sensors and provides little
contextual details. On the other hand, visual data is dense and high-dimensional, offering a rich
tapestry of environmental details. When integrating these two types of data into a single neural
network, the model must process and interpret each modality effectively, while also finding a way to
synergize this information to facilitate intelligent decision-making. (ii) Vast amounts of training data
are required for such tasks, which is typically generated within a simulated environment. However,
transferring the visuotactile skills learned in a simulator to the real world is a non-trivial problem.
Each modality, vision and touch, has its own domain gap. Bridging them concurrently for a combined
visual-tactile model even heightens the complexity significantly.

In this paper, we aim to equip the robot with a policy that effectively leverages multi-modal feedback.
In neuroscience studies, certain individuals can perceive color when they touch things, which refers
to Tactile-Visual Synesthesia (1; 2). Inspired by it, instead of processing each modality separately in
representation learning and merging the learned features later, we propose a novel point cloud-based
tactile representation. We formulate this representation in a way that “paints" the tactile data from
Force-Sensing Resistor (FSR) in conjunction with the point cloud from the camera into a unified
3D space. This approach preserves the spatial relationship among the robot links, FSR sensors, and
the object being manipulated. Effectively, the robot is equipped to “see" its tactile interactions, a
concept we call Robot Synesthesia. This method allows for the seamless integration of both sensory
inputs from the outset, which offers abundant spatial information, facilitating better reasoning about
robot actions. Furthermore, we can easily generate these tactile point clouds in both simulated and
real-world using the robot’s kinematics. This strategy can reduce the compounding errors of vision
and touch during sim-to-real transfer, by treating these two modalities as an integrated entity.

2 Visuotactile Dexterous Manipulation

To obtain visual observations, we place a Microsoft Azure Kinect camera beside the hand in both real
and simulated settings. We then generate the point cloud using the depth image. The point clouds
in simulation closely mirror those in reality, especially compared with RGB images. We create an
augmented point cloud (3) from the robot’s proprioception to model the spatial relationship between
the hand and the object, by sampling on the robot’s mesh at the current pose.

2.1 Benchmark Problems

In this paper, we mainly focus on three distinct benchmark problems: (i) Wheel-Wrench Rotation:
Inspired by scenarios where a user must switch handles on a wrench during use, this task involves
rotating an artificial multi-way wheel wrench along the z-axis in hand without dropping it. To
successfully complete this task, the robot must visually identify the next "possible" handle for
interaction while concurrently sensing the wrench’s rotation via touch. (ii) Double-Ball Rotation:
This task requires the simultaneous manipulation of two identical balls to rotate around each other
along the z-axis. Given that tactile feedback alone cannot distinguish between the balls, it is crucial
for the robot to visually locate both. (iii) Three-Axis Rotation: This task extends beyond the z-axis to
require the robot to rotate objects around a fixed x or y-axis. Moreover, the policy should demonstrate
the ability to manipulate a variety of objects with different shapes, extending its dexterity to objects
not included in the training set.
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Figure 2: Training Pipeline. Our teacher policy takes robot proprioception, binary contact, object
pose, and object shape embedding as input. After training the teacher policy via RL, we distill it to a
visuotactile-based student policy. Besides robot proprioception and touch signal, the student policy
takes a point cloud from depth-camera, an augmented point cloud based on robot proprioception, and
the proposed tactile point cloud. We use one-hot vectors to distinguish point clouds. Note that we’ve
eliminated noise from the point clouds for better clarity here.

3 Learning Visuotactile Dexterity

3.1 Tactile-Visual Synesthesia

Instead of processing tactile and visual modalities separately for feature extraction, we unify tactile
and visual modalities by projecting them onto a single 3D space, similar to how humans might
simultaneously perceive touch and visual stimuli in their minds. Concretely, for each tactile sensor
on the hand that detects a signal (i.e., ot,i = 1), we sample points on the sensor’s meshes to create a
tactile-based point cloud P touch

t . When combining P touch
t with P c

t and P a
t , we provide the policy

network with a spatial relationship of all the observation entities. In our implementation, we set the
number of sampled points Nc = 512, Na = 8nlink, and Nt = 8ntouch, where nlink = 21 is the
number of links on hand and ntouch ∈ {0, · · · , 16} is the number of triggered tactile sensors. Our
experiments demonstrate that points sampled from active tactile sensors are implicitly chosen by
our learned policy for representation learning. Note that we transform all point clouds to the hand
palm (4) frame before feeding them into the neural network.

3.2 Teacher-Student Training Pipeline

Learning the controller π using RL is data inefficient when the observation is high-dimensional,
e.g., point clouds. To mitigate this issue, we employ a teacher-student learning approach to obviate
training vision policies with RL, as shown in Figure 2.

4 Experiments

In this part, we compare our robot synesthesia approach to several baselines in both the simulation
and the real. Specifically, we are interested in the following questions:

1) How much benefit do visual and tactile modalities offer?
2) Is teacher-student pipeline necessary for efficient training given both tactile and visual

modalities?
3) How does our policy network process the two modalities through synesthesia?

We answer these questions through an extensive case study on the benchmark problems.

3



4.1 Stage I: RL training with different sensing capabilities

Table 1: Evaluation of RL policies of different sensing capabilities on three benchmark problems
in the simulation. Each policy is tested for 500 episodes. The results are averaged over 3 policies
trained on 3 seeds. Each trial lasts 50 seconds.

4-way Wrench Double Balls Multi-Object (x-axis) Multi-Object (y-axis) Multi-Object (z-axis)Obs Type CRR TTF CRR TTF CRR TTF CRR TTF CRR TTF

Visual RL 10.9±2.2 8.1±3.2 127.8±78.6 10.5±3.7 15.3±8.2 16.8±11.8 22.4±8.8 21.4±17.8 29.5±7.1 2.9±0.4

PS 440.7±590.3 22.6±18.5 620.9±39.9 28.8±0.7 446.1±137.7 33.1±7.1 552.1±318.7 33.5±8.3 878.7±528.3 36.9±15.4

Ours 1011.1±329.9 47.5±0.4 1045.3±64.9 36.2±2.3 985.9±174.1 45.1±2.6 987.3±141.9 46.8±1.0 1353.7±123.8 48.2±0.4

Table 2: Evaluation of student policies of different sensing capabilities on three benchmark problems
in the simulation. Each policy is tested for 500 episodes. Each trial lasts 50 seconds.

4-way Wrench Double Balls X-Axis Y-Axis Z-Axis)Obs Type CRR TTF CRR TTF CRR TTF CRR TTF CRR TTF

Touch 363.2 23.6 317.1 13.6 390.9 24.2 710.9 42.6 702.4 35.6
Cam+Aug 94.6 15.2 162.7 9.6 630.9 40.3 743.5 42.9 624.2 29.2

Touch+Cam+Aug 344.1 21.1 148.6 9.6 881.1 47.4 619.0 41.3 909.8 37.7
Ours 504.0 29.2 407.7 17.1 846.9 39.9 686.8 41.2 1035.0 41.3

In this section, we evaluate policies trained on the benchmark problems for 500 episodes as is shown
in Table 1. Our approach outperforms PS and Visual RL in all the tasks. This indicates that the
ground-truth object pose is essential for robust and meticulous manipulation, especially when the
object, e.g. multi-way wrenches, requires different actions as its direction varies. Also, learning
vision-based RL policies is data-inefficient, probably because the policy needs to extract features
from high-dimensional inputs and learn high-rewarding actions simultaneously. More information
about the definition of evaluation metric can be found in the appendix.

4.2 Stage II: Imitation learning with different sensing capabilities

In this section, we distill teacher policies to visuotactile-based policies and perform ablation study for
different sensing capabilities. As shown in Table 2, Touch refers to binary contact, Cam refers to
camera-based point clouds, Aug refers to augmented point clouds, and Syn refers to proposed tactile
point clouds. For rotating objects of regular shapes, visual policies achieve similar dexterity to each
other. However, when it comes to more challenging objects like multi-way wrenches and two balls,
our visual-tactile synesthesia method outperforms all the baselines.

4.3 Real-world Deployment

A rudimentary concatenation of tactile signals and the extracted features of point clouds could
increase the challenge for the policy to comprehend their underlying relationship. In contrast, our
proposed visual-tactile synesthesia approach generally offers benefits. We also observe that visual
policies tend to operate more cautiously, making occasional adjustments to nudge the object back to
the palm center, while policies lacking visual perception tend to execute an almost fixed sequence of
motion, irrespective of the object’s deviation or instances of it becoming stuck.

5 Conclusion

This paper introduces a system for in-hand dexterous manipulation utilizing visuotactile sensing. We
propose a novel tactile representation based on point clouds, and a paired network architecture to
leverage it. Our results show that the policy, which has been trained in a simulator using vision and
touch input, effectively transfers to the real world. It can solve complex tasks such as double-ball
rotation and generalize to novel objects. Future work may encompass goal-conditioned object rotation
tasks and the integration of optical tactile sensors. We are committed to releasing the code for our
simulation environment and training pipeline.
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A More Details on RL Formulation

State. The state of the system consists of the joint position qt ∈ R16 of the Allegro hand, the binary
tactile signal ot ∈ {0, 1}16, the rotation axis k ∈ S2, the previous position target q̂t ∈ R16, the
camera point cloud P c

t ∈ RNc×3, the augmented point cloud P a
t ∈ RNa×3, and the tactile point

cloud P touch
t ∈ RNa×3.

Action. At each step, the action provided by the policy network is a relative control command
at ∈ R16 and a PD controller drives the robot hand to approach q̂t+1 = q̂t + ât. Note that we employ
an exponential moving average in our implementation, i.e., ât = ηat + (1− η)ât−1, t ≥ 1 and let
â0 = 0. We set η = 0.8 in our experiments.

Reward. We design a reward function for robust and transferable in-hand rotation, which is a
weighted composition of several components:

rt = c1rrot + c2rvel + c3rdist + c4rtorq + c5rwork + c6rctrl. (1)
rrot rewards the object’s rotation angle. rvel penalizes the object’s linear velocity to discourage
motions that translate the object. rdist is a decreasing function regarding the distance between the
object and the fingertips, encouraging the fingers to approach the object in hand and interact with
it. rtorq penalizes large torques, rwork penalizes the work of the controller, and rctrl penalizes the
control error between command targets and real robot motion. We additionally implement a large
penalty when the object falls off the hand. c1, c2, · · · , c6 are tuned hyper-parameters.

B More Details on Teacher Student Training.

Learning the controller π using RL is data inefficient when the observation is high-dimensional, e.g.,
point clouds, because the policy is required to extract essential information from high-dimensional
observations and discern which actions are high-rewarding. To mitigate this issue, we employ a
teacher-student learning approach to obviate training vision policies with RL, as shown in Figure 2.

Teacher policy training. We first use the proximal policy optimization (PPO)(5) to train teacher
policies with low-dimensional states. Its input consists of the joint position of the Allegro hand
qt, the binary tactile signal ot, the rotation axis k, the previous position target q̂t, the object’s
position xt ∈ R3, its velocity vt ∈ R3, its angular velocity wt ∈ R3, and the object’s shape feature
embedding f ∈ R32. For tasks that require generalizability over multiple objects, we encode the
shape information via a pre-trained PointNet(6) encoder in (7). Note that for each object, the shape
feature embedding remains the same throughout the training. Given the state information, we use a
Multi-Layer Perceptron (MLP) for both policy and value networks. We stack the current state with 3
historical states as input for better perception.

Student policy training. After using RL to train the teacher policy, we distill it to a student policy
with visuotactile input. Concretely, its input includes the joint position qt, the binary tactile signal ot,
the rotation axis k, and the previous position target q̂t. We stack it with 3 historical states. For the
visual observation, the input includes camera point cloud P c

t , augmented point cloud P a
t , and the

proposed tactile point cloud P touch
t . We attach a one-hot vector to each point and concatenate them

together as Pt.

We use PointNet(6) as the point cloud encoder and feed the latent vector and other inputs into an MLP.
We adopt a two-stage distillation pipeline: We first collect a teacher dataset D of 5120k transitions
and use Behavior Cloning (BC) to pre-train our student policy network; in the second stage, we use
Dataset Aggregation (DAgger)(8) to fine-tune the network for more robust behavior.

C Real Robot Setup

As is shown in Figure 3, our hardware setup consists of an XArm6 robot arm and a 16-DOF Allegro
Hand with a depth camera. We attach 16 Force-Sensing Resistors (FSR) as tactile sensors to the palm
and finger links of the robot hand as suggested by (9). We gather the contact signal from each sensor,
then binarize the measurement according to a predetermined threshold θth to abridge the Sim-to-Real
gap. We use Isaac Gym(10) as the rigid body physics simulator. The simulation setup is visualized in
Figure 1. We simulate 16 contact sensors and calculate binary contact signals in the same way as in
real.
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Figure 3: Real-World Setup. We use an Allegro Hand attached with 16 Force-Sensing Resistors. A
Microsoft Azure Kinect camera is placed facing forward the robot.

Sim Image Sim Point Cloud Real Image Real Point Cloud

Figure 4: Point Cloud Visualization in Sim and Real. The Sim-to-Real gap is notably larger for
RGB images compared to point clouds, leading us to select point clouds as the visual observation for
our policy.

To obtain visual observations, we place a Microsoft Azure Kinect camera beside the hand in both
real and simulated settings. We then generate the point cloud using the depth image. As illustrated
in Figure 4, the point clouds in simulation closely mirror those in reality, especially compared with
RGB images. We create an augmented point cloud (3) from the robot’s proprioception to model the
spatial relationship between the hand and the object, by sampling on the robot’s mesh at the current
pose. To differentiate between the camera-generated point cloud and the augmented one, we append a
one-hot vector to each point. Point cloud visualizations are shown in Figure 2. The control frequency
remains consistent at 10Hz in both simulated and real environments.

D Experiemental Setup

Evaluation Metric. To evaluate the performance of a trained policy, we use the following metrics as
suggested by (11).

1) Cumulative Rotation Reward (CRR) is the reward our agent obtains in an episode. We
use it to evaluate the rotation capability of a policy in the simulation.

2) Cumulative Rotation Angle (CRA) is the angle (by rounds) the object rotates along the
axis in an episode. We use it to evaluate a policy in the real.

3) Time-to-Fall (TTF/Duration) is the length of an episode (by seconds). TTF varies when
the object falls off before the maximal episode length.
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Baselines. In the experiments, we mainly compare our approach to the following baselines to study
how much benefit visual and tactile modalities provide in training.

1) No-Tactile. Given a teacher policy, we train the student policy with no tactile information,
where the robot can perceive neither the point cloud-based tactile representation nor the
state-based binary contact. The only way to infer the object’s spatial information is through
vision.

2) No-Synesthesia. Given a teacher policy, we train the student policy with no tactile synesthe-
sia. The robot only perceives the camera and augmented point clouds as visual input. For
contact information, the policy takes only the state-based binary contact as input and has to
infer specific positions of the contacts implicitly based on visual perceptions.

3) No-Pointcloud. Given a teacher policy, we train the student policy with no visual informa-
tion. The policy only takes robot proprioception and binary contact as input.

We also compare our approach to single-stage baselines to substantiate the use of a teacher-student
pipeline.

1) Vision RL. We train a visuotactile-based policy from scratch using RL. The policy observes
robot proprioception, binary contact, and all the point clouds.

2) Partial-State(PS). We train a non-visual policy via RL for real deployment as in(9). Since
the object’s ground-truth pose and shape embedding are not available in real, the policy only
observes robot proprioception and binary contact.

E Real World Results

We transfer the visuotactile policies to the real robot without any fine-tuning and test whether
visual policies continue to provide benefits. The results are shown in Table 3. Although visual
policy might show comparable performance for simple geometry in simulation, the advantage of
integrating vision and touch becomes more significant when deployed to the real world. These results
highlight the low domain gap of our proposed tactile point cloud representation. A rudimentary
concatenation of tactile signals and the extracted features of point clouds could increase the challenge
for the policy to comprehend their underlying relationship. In contrast, our proposed visual-tactile
synesthesia approach generally offers benefits. We also observe that visual policies tend to operate
more cautiously, making occasional adjustments to nudge the object back to the palm center, while
policies lacking visual perception tend to execute an almost fixed sequence of motion, irrespective of
the object’s deviation or instances of it becoming stuck.

Table 3: Evaluation of policies (CRA/TTF) in the real-world deployment. The above two lines refer
to non-visual methods and the rest are visual policies. Each policy is tested for 5 episodes. Each trial
lasts 60 seconds.

Obs Type
(CRA/TTF) 4-way Wrench Double Balls Multi-Object (x-axis) Multi-Object (y-axis) Multi-Object (z-axis)

Non-visual RL 0.25/60.0 0.2/28.6 0.35/60.0 1.0/60.0 8.6/60.0
Touch 0.25/60.0 8.7/11.3 0.7/60.0 0.2/60.0 7.4/60.0

Cam+Aug 0.25/60.0 8.3/11.5 0.25/60.0 1.0/33.3 5.1/60.0
Touch+Cam+Aug 0.25/60.0 7.3/10.2 0.5/60.0 1.4/28.3 5.1/57.1

Touch+Cam+Aug+Syn 1.5/43.0 11.9/17.0 2.1/26.6 0.9/29.3 10.2/60.0

F Qualitative Analysis: Visualization of PointNet intermediates

In PointNet, the input point cloud is fed into a local MLP extracting features of each point before
a Max Pooling layer over points in each dimension of the features. Thus, PointNet is trained to
implicitly select no more than cout points for representation learning, where cout is the output
dimension of PointNet. We visualize in Figure 5 the points selected by our policy during evaluation.
Interestingly, we find that our policy uses 42.7% of tactile-based points on average and the rest points
are mainly from the tips or edges of fingers and the palm. This indicates that the point cloud encoder
can extract meaningful features based on our visual-tactile synesthesia design.
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Figure 5: Visualization of selected point clouds (foreground) among observed point clouds (back-
ground) during evaluation. Red points belong to the proposed tactile point cloud.

G Related Work

Dexterous Manipulation presents a wealth of opportunities for broad applications (12; 13; 14; 15;
16; 17). It enables the execution of intricate manipulative tasks, such as sliding (18; 19), rolling (20;
21; 22; 23; 24), pivoting (25; 26), and regrasping (27; 28; 29). Earlier methods addressing dexterous
manipulation were grounded in classical control (30; 31). However, these methods rely on expert-
engineered dynamics models, which restricts their utility for more complex tasks. To overcome these
limitations, recent research has leveraged deep model-free RL for dexterous manipulation (32; 33; 34;
35; 36). Further enriching these advancements, imitation learning and combining common RL with
demonstrations has led to higher sample efficiency and more natural manipulation behaviors (37; 38;
39; 40; 7; 41; 42; 43; 44). Dexterous in-hand manipulation has been a focal point of research interest
recently (45; 46; 47; 11; 9; 48). To generalize to new objects, researchers have explored different
sensors to capture object geometry and dynamic properties. Qi et al.(11) demonstrated that policy
could infer object position and physical properties using proprioceptive history. But without explicit
object information, it was only effective for z-axis rotation tasks. Yin et al. (9) proposed integrating
binary tactile signals with proprioception for this task. However, the tactile signal was too sparse
to capture detailed geometric attributes and thus could not handle objects with non-convex shapes.
Chen (49) utilized depth information to aid object rotation but relied on an external pose estimation
module. Most similar to us, a recent study (50) utilizes RGB images from optical tactile sensors and
depth images for in-hand rotation. However, it necessitated continuous contact between the object
and tactile sensors, constraining it to smaller objects that can be rotated on the fingertips. In contrast,
our work does not impose any specific requirements on the object’s initial location and can handle
objects of diverse shapes and sizes. Furthermore, our tactile point cloud representation provides
explicit 3D information about the object and tactile sensors’ location, while their models are based
on 2D images. As a result, our policy can solve tasks requiring more complex 3D spatial reasoning,
such as rotating two balls simultaneously.

Visuotactile Manipulation, the integration of visual and tactile modalities, is a fundamental mech-
anism for human interaction with the environment (51), which presents significant potential for
enhancing robot manipulation capabilities (52; 53; 54; 55). The visual modality offers a comprehen-
sive, non-contact perspective of the environment, while the tactile modality complements this by
offering detailed, contact-dependent properties such as texture, temperature, hardness, and weight.
The key to integrating these modalities in robotic manipulation lies in two aspects: (i) the representa-
tion of each modality, and (ii) the strategy employed to fuse these modalities. In the visual modality,
RGB images are a common choice due to their widespread availability (53; 56). But these images do
not inherently capture distance information, which is often critical in manipulation tasks. To address
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this limitation, researchers (50; 49) proposed using depth to handle more contact-intensive tasks such
as in-hand rotation. Different from these methods, our approach utilizes the point cloud captured
by a camera, inherently incorporating 3D information into the visual representation. For the tactile
modality, raw sensor readings are a natural choice (57; 58). However, for a smaller sim-to-real gap,
the binary contact vector has been used (9; 59; 60; 61). Notably, vision-based tactile sensors, such
as DIGIT (62) and GelSighT (63), can also encode tactile information into RGB images. Another
critical consideration is the design of a multi-modal learning paradigm. Most existing approaches
favor combining modalities at the feature level, where separate feature extractors are trained for each
modality, and the predicted features are concatenated as a multi-modal representation (57; 64). When
utilizing optical tactile sensors with tactile images, the combination can also be performed at the
input level, as both vision and touch are represented as RGB images (54; 56). In contrast, our method
represents tactile data as a point cloud and merges with the camera point cloud at the input level.
This approach treats the combined visual and tactile data as a single input to the policy network. This
innovative design, which we term Robot Synesthesia, enriches the contextual understanding for both
modalities and encodes the sensory data into a cohesive 3D space.

13


	Introduction
	Visuotactile Dexterous Manipulation
	Benchmark Problems

	Learning Visuotactile Dexterity
	Tactile-Visual Synesthesia
	Teacher-Student Training Pipeline

	Experiments
	Stage I: RL training with different sensing capabilities
	Stage II: Imitation learning with different sensing capabilities
	Real-world Deployment

	Conclusion
	More Details on RL Formulation
	More Details on Teacher Student Training.
	Real Robot Setup
	Experiemental Setup
	Real World Results
	Qualitative Analysis: Visualization of PointNet intermediates
	Related Work

