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Abstract

Humans rely on their visual and tactile senses to develop a comprehensive 3D under-
standing of their physical environment. Recently, there has been a growing interest
in manipulating objects using data-driven approaches that utilise high-resolution
vision-based tactile sensors. However, 3D shape reconstruction using tactile sens-
ing has lagged behind visual shape reconstruction because of limitations in existing
techniques, including the inability to generalise over unseen shapes, absence of
real-world testing and limited expressive capacity imposed by fixed topologies of
graphs or meshes. To address these challenges, we propose TouchSDF, a Deep
Learning approach for tactile 3D shape reconstruction that leverages the rich infor-
mation provided by a vision-based tactile sensor and the expressivity of the implicit
neural representation DeepSDF. This combination allows TouchSDF to reconstruct
smooth and continuous 3D shapes from tactile inputs in simulation and real-world
settings, opening up research avenues for robust 3D-aware representations and
improved multimodal perception for robot manipulation. Code and supplementary
material are available at: https://touchsdf.github.io/

1 Introduction
The current state of 3D shape reconstruction research is primarily concerned with the sense of vision
[2] [17]. However, training Computer Vision algorithms for object manipulation is challenging due
to the high-dimensional observation space, which suffers from occlusion, external lighting conditions
and a distal view. Recently, several data-driven methodologies that utilise vision-based tactile sensors
for 3D understanding have been proposed [5, 14, 8, 9]. To the best of our knowledge, Smith et al. [15]
proposed the first and only approach for vision-based tactile reconstruction, which utilised DIGIT
vision-based tactile sensors [7] to extract contact-rich information. Although that work serves as a
foundation for tactile-driven 3D reconstruction, a lack of testing in a real-world scenario makes it
challenging to assess its applicability to robotic manipulation.

In this work, we propose TouchSDF, a novel approach for 3D shape reconstruction that leverages
implicit neural representations for vision-based tactile sensing. Unlike existing methods that utilise
discrete representations, TouchSDF employs DeepSDF [13], an implicit neural representation that en-
codes a smooth and continuous surface, enabling more accurate and robust reconstructions. DeepSDF
is capable of reconstructing 3D geometry from partial point clouds, which is useful in our context
as tactile sensors provide partial observations of an object. A key step for 3D reconstruction in the
real world is to have effective real-to-sim tactile image translation, where we extend previous work
with a GAN-based method [3] to handle complex surfaces and 6D poses. Through evaluation on both
simulated and real objects, we demonstrate the effectiveness of TouchSDF in tactile-based 3D shape
reconstruction and highlight its potential for enhancing object exploration and manipulation tasks.

Contribution In summary, our work makes the following principal contributions:
1) We propose TouchSDF, an approach for 3D shape reconstruction using vision-based tactile
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Figure 1: Overview of TouchSDF: (1) A robot samples the object’s surface to obtain real tactile
images that are translated into simulated images. (2) A Convolutional Neural Network (CNN) maps
the simulated images to sets of 3D points representing the local object surface at the touch locations.
(3) A pre-trained DeepSDF model predicts a continuous signed-distance function (SDF) representing
the object shape from the point clouds over multiple contacts.

sensing. By leveraging the implicit neural representation DeepSDF, our method encodes smooth and
continuous surfaces that enable accurate and robust reconstructions from partial observations.
2) We demonstrate the ability to generalise over unseen objects and poses both in simulation and in
reality by conditioning on latent variables, thus encoding a wide range of geometries.
3) We give the first evaluation of 3D shape reconstruction using purely vision-based tactile sensing in
a real-world setting.

2 Methodology

Our reconstruction procedure has three steps (Fig. 1). In the first step, we collect tactile images by
sampling the surface of the object we intend to reconstruct. We also store the sensor (end-effector)
pose at contact alongside the local point cloud of the surface at the touch location to serve as ground
truth to train a local surface-prediction model. Real-world tactile images are converted into simulated
tactile images using a real-to-sim GAN model [3]. In the second step, we predict a local point cloud
based on the simulated tactile image and sensor pose. Finally, we employ a pre-trained DeepSDF
model to reconstruct objects using the predicted partial point clouds.

2.1 Simulation

Collection of tactile images and local point cloud. Tactile images, local point clouds and sensor
poses were collected for training purposes using a PyBullet-based tactile simulator (Tactile Gym [3]
[10]). Specifically, the tactile readings collected consist of 256×256 pixel tactile images obtained by
rendering the contact depth at the touch location using the PyBullet’s synthetic camera. Collected
local point clouds serve as the ground truth needed to train a model that maps a tactile image into the
corresponding touched surface.

Tactile images to point cloud prediction. We applied Smith et al.’s approach [15] to map tactile
images to local point clouds, using a simulated 6-DoF robot arm with a TacTip tactile sensor [3, 10].
Specifically, we collected 2D tactile images in simulation, representing depth maps of touched areas
on objects, and their corresponding ground truth point clouds. We utilised a Convolutional Neural
Network (CNN) to deform a base mesh into a predicted contact geometry, following the procedure
outlined in[15]. Specificaly, we defined an initial base mesh, and then predicted vertex displacement
using a CNN conditioned on tactile images. We then sampled a point cloud on the deformed mesh
and optionally enhanced it by estimating surface normals and sampling additional points. This step
increases the robustness of the DeepSDF model at inference time, as we do not only have points
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on the surface but also points inside and outside the shape. The CNN was trained to minimise the
Chamfer Distance between the predicted point cloud and the ground truth point cloud.

3D shape reconstruction using DeepSDF. Following the methodology outlined in [13] on DeepSDFs,
we constructed a dataset of 35000 SDF pairs {(xj, sj)}Nj=1 per object, where x ∈ R3 are the
coordinates sampled within a closed volume around the objects and sj ∈ R corresponds to the
associated signed distances. We employed the architecture originally proposed by [13] with added
positional encoding [12, 18]. During training, the DeepSDF model learns a continuous signed
distance function fθ(x, z) conditioned on a shape embedding z. To ensure the encoding of shape
information, an embedding zi is jointly optimized with the network parameters θ for each shape
i. As a result, similar shapes are encoded by similar latent vectors, enabling interpolations in the
latent space that facilitate the reconstruction of unseen objects. The objective minimised during the
training process follows [13]: L(θ, z) = arg min

θ,zi

∑
i

∑N
j=1 ||fθ(γ(xj), zi)− sj ||1 + α · ||zi||22. Here

the regularisation term ||zi||22 weighted by α is crucial to avoid exploding gradients when optimising
latent vectors.

Reconstruction. The CNN-predicted point cloud O provides a partial observation of the geometry
at the touch location. Because these points lie on the object’s surface, we attribute them with a
signed distance value of zero. To reconstruct the complete shape of the target object, a DeepSDF
auto-decoder [13] is conditioned on O to optimise a 128-dimensional latent code zi by solving
arg maxzi

P(zi|O) via first-order optimisation. This is achieved by freezing the model’s parameters θ
and solving arg minzi

L(zi). The inferred global latent vector represents a compact representation of
the entire shape that best describes the partial observation. The signed-distance function is defined by
conditioning a pre-trained DeepSDF model on coordinates x and inferred latent vector zi. Finally, a
surface S is extracted by employing the deterministic Marching Cubes algorithm [11], which extracts
the zero-level set of the predicted signed-distance function S = {x ∈ R3|fθ(x, z) = 0}.

2.2 Real world

Hardware. We conducted real-world experiments with a 6-DoF industrial robot arm (ABB IRB
120). The robot was equipped with a high-resolution vision-based tactile sensor, for which we used a
TacTip 3D-printed soft biomimetic tactile sensor [9]. For real-world evaluation, we 3D-printed four
objects (two different bottles, a camera, and a bowl) selected from ShapeNetCore.V2 [1] and selected
two everyday objects (a transparent jar and a mug). These objects are unseen during training.

Real-to-Sim Image Transfer. When reconstructing objects in the real world, the robot collects real
tactile images, which the point cloud prediction model is not trained to process. Therefore, we map
the real tactile images to simulated ones using the translation approach proposed in [3], which utilizes
a Generative Adversarial Network (GAN) framework for image-to-image translation. The pix2pix
GAN [6] is trained with pairwise simulated (depth map) and real tactile images (marker patterns)
collected with the same contact poses [3] [10].

Sim-to-Real Object Reconstruction. In this step, we combine the point cloud prediction model,
DeepSDF and real-to-sim image transfer to achieve sim-to-real object reconstruction. Firstly, we
collect real tactile images by performing random contacts with the robotic arm-mounted tactile sensor
onto the real-world objects. For each touch, the real image is translated into a simulated tactile image
and labeled with the corresponding end effector pose. The CNN is used to predict a local point
cloud describing the contact geometry. Finally, our pre-trained DeepSDF model is conditioned on the
predicted point clouds and estimated signed distance to extract the shape of an object (see Sec. 2.1).
The evaluation of our Sim-to-Real method is outlined in the Appendix.

3 Results

3.1 Simulation

Following [15], our evaluation was performed on the ABC dataset. We sampled 3500 shapes for
training, 350 for validation, and 200 for testing. To ensure a fair comparison with Smith et al. [15],
shapes were randomly sampled from the training, validation, and testing sets used by the authors.
Results on an additional dataset (ShapeNet) are reported in the Appendix I. Table 1 shows the Chamfer
Distance (CD) [16], Earth Mover’s Distance (EMD) [4], and Surface error obtained by TouchSDF
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Figure 2: Qualitative comparison of TouchSDF and Smith et al. (grasp-only) performance after 20
touches.

and Smith et al. after 20 touches. To evaluate Smith et al.’s approach, we used the grasp-only
model provided by the authors. Both EMD and Chamfer Distance were computed using 4096 points.
TouchSDF achieves better EMD and surface reconstruction error, while achieving slightly lower CD
despite a better visual quality (Fig. 2). This is due to has known limitations in accurately measuring
the visual quality of reconstructed meshes [57] [58].

3.2 Real world

Figure 3: Reconstruction of four real 3D-printed objects and two everyday objects. The Chamfer
Distance (CD) calculation requires a CAD model, hence it is applicable to 3D-printed objects but not
to everyday objects. The cube-shaped mounting sockets are not part of the objects.

CD (↓) EMD (↓) Surf. err. (↓)

Smith et al. 0.003 0.19 2785%(grasp-only)
TouchSDF (ours) 0.006 0.07 36%

Table 1: Comparison between TouchSDF and Smith et al.

Reconstruction. To reconstruct the 3D-
printed objects, we collected real tactile
images from random locations on the ob-
ject surfaces and translated them into
their corresponding simulated images.
The reconstruction procedure followed
the same methodology employed in sim-
ulation. As the embeddings optimised
by DeepSDF are not SE(3)-invariant, it
was necessary to ensure that the pose of the object being reconstructed is consistent with the poses
observed during training. To achieve this, the world reference frame was set manually to the centre
of the objects. Our method successfully reconstructed both real 3D-printed objects, achieving a
low Chamfer Distance that is comparable to those obtained in simulation (Fig. 3), and additional
everyday objects (a mug and a transparent jar), for which the CD could not be computed due to the
lack of CAD model. A further analysis on this result, as well as an ablation on the robustness to pose
perturbations, is reported in the Appendix.
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