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Abstract
This paper investigates active sensing strategies that employ vision-based tactile
sensors for robotic perception and classification of fabric textures. We formalize the
active sampling problem in the context of tactile fabric recognition and provide an
implementation of information-theoretic exploration strategies based on minimizing
predictive entropy and variance of probabilistic neural network classifiers. By
evaluating our method on a real robotic system, we find that the choice of the active
exploration strategy has a relatively minor influence on the recognition accuracy
as long as the objects are touched more than once. In a comparison study, while
humans achieve 66.9% recognition accuracy, our best approach reaches 90.0%,
showing that vision-based tactile sensors are highly effective for fabric recognition.

Classification of fabrics has been tackled with different types of sensors using both supervised
and active methods. Vibration/force-based tactile sensors of different types—such as the iCub
sensors [1, 2, 3], BioTac sensors [2, 3], and custom-designed ones [4, 5, 6]—have been used for
supervised texture classification, using spiking neural networks [2], modified RNNs [3], and k-NN
classifiers [6]. All these methods rely on high-frequency temporal data, requiring RNNs or spatio-
temporal subsampling to keep the input dimensionality low. In contrast, vision-based tactile sensors
provide high-resolution data but at a lower rate, thereby requiring less history as input. Supervised
classification of fabrics was successfully showcased using GelSight heightmap patterns [7] and more
advanced spatio-temporal attention features [8]. Furthermore, active sampling methods have been
developed for GelSight to ‘actively’ collect data, e.g., repeating touches until a ‘good’ tactile image is
obtained [9], or for material roughness classification [10], where predictions on image patches were
weighted by the output variance of a Bayesian CNN to improve the overall label prediction accuracy.

In this paper, we tackle the problem of tactile active texture recognition (see Fig. 1): with no pre-
training, a robot is given a ‘reference’ texture and asked to identify it among four comparison textures
using as few touches as possible. Unlike [9], we do not want to pre-train on a large dataset but rather
quickly adapt on-the-fly, and we do not aim to ‘classify’ but only ‘recognize’ fabrics. In contrast
to [10], we do not use uncertainty for label prediction but rather for action selection. In the next
sections, we formalize the tactile active texture recognition problem, present a general Bayesian
decision-theoretic framework for action selection, describe our implementation which leverages
probabilistic NNs for uncertainty quantification, and provide extensive empirical studies, including
the comparison to human exploration strategies and experiments on a real robot.

1 Problem Setup and Task Formalization
We investigate sample-efficient texture recognition using vision-based tactile sensors such as GelSight
Mini [11], Digit [12], or FingerVision [13]. In our setup (Fig. 1), a GelSight Mini sensor is held
by a Franka Panda arm [14] and pressed against pieces of fabrics on plastic platforms at predefined
locations with randomized amounts of pressure and rotation around the vertical axis to provide more
variability in the data. The leftmost platform holds the reference texture, while the remaining four
platforms hold randomly chosen comparison textures, one of which is equal to the reference.
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Figure 1: The texture recognition task requires
identifying a given fabric among four compari-
son samples: (a) robot arm exploring fabrics; (b)
example denim fabric; (c) corresponding tactile
image; (d) human participant using index fingers
to compare fabric samples.

The agent’s goal is to identify the reference among the
comparison textures using as few touches as possible.
Crucially, the agent has no prior knowledge of the
textures, and therefore has to learn about them within
one trial, i.e., one fixed selection of five fabrics in a
particular order. One trial consists of multiple touches
and ends after a predefined number of touches in our
robot experiments or once the participant has made a
decision in our human study. The action of the agent is
the high-level choice which platform to approach next
(the low-level robot control is handled by a Cartesian
position controller). We call each step of this action-
observation loop a round, and we start counting rounds
after each object has been touched once, i.e., if the
process has terminated after one round, it means the
agent has touched all four comparison fabrics and the
reference fabric once and then did just one extra touch.
Thus, one trial consist of several rounds (up to 20). We
do multiple trials with different textures, and multiple
runs for each trial to reduce the statistical error.

To provide textures for our experiments, we created a dataset of 25 cotton fabrics, chosen to be
particularly hard to distinguish by touch, as confirmed by our human study in Sec. 3.2. For each
fabric, we collected 200 samples with randomly perturbed positions and rotations around the vertical
axis. A sample of this dataset can be seen in Fig. 1c. Our complete dataset is available online.

2 Tactile Active Texture Recognition Method
Consider one round of the agent’s decision making. Having touched each of the five platforms one
or more times, the agent needs to make a decision which platform to touch next. The Bayesian
approach to this problem is to build a probabilistic model and to choose the action that provides
the most information to support the final decision (i.e., the decision which fabric is identical to the
reference) [15]. To implement this approach, we specify the model, describe how it is updated using
the new data, and define the acquisition function, i.e., the action selection strategy.

2.1 Probabilistic Model Specification

(a) Inception-S with added dropout

(b) Inception-v3 with added dropout

Figure 2: The considered architectures of the probabilistic classifier:
Inception-v3 and small Inception-v3 (Inception-S) with dropout.

We employ a CNN with dropout
layers to implement a probabilis-
tic classifier [16], as dropout was
shown to provide a viable ap-
proach for uncertainty quantifi-
cation with neural networks [17].
We consider three CNN variants:
i) Inception-v3 [18] pre-trained
on ImageNet [19] (Inception-
PT); ii) randomly initialized
Inception-v3 (Inception-RI); iii)
small unpretrained Inception-v3
(Inception-S), which drops all the
layers between the first InceptionA and the last InceptionC blocks (see Fig. 2). Considering these
network variants allows us to evaluate the effects of pretraining and the network depth.

2.2 Model Update

Once a new tactile image is obtained, the model needs to be updated to incorporate the new evidence.
As is common in deep learning, we employ data augmentation [20], by generating 10 randomly
rotated versions of the same tactile image. Using all the samples collected during the current trial, we
retrain the probabilistic NN classifier: the samples of the comparison textures serve as inputs and the
respective platform positions serve as labels. The output of the classifier is a probability distribution
pθ(i∣o) over the platform labels i ∈ {1,2,3,4}, given an image o and the model parameters θ. Hence,
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Figure 3: Comparison of the exploration strategies on the tactile active texture recognition task. Average
prediction accuracy, average variance, and entropy of the predictions are shown. Inception-S is used in all
experiments. The Variance strategy achieves the highest accuracy, closely followed by Entropy and Random.
Interestingly, the Variance strategy leads to a faster entropy decrease even than Entropy (rightmost plot).

the model learns to map the texture samples to the platform labels. When queried with the reference
texture (unseen during training), the model outputs a ‘probability distribution’ over the labels. To
obtain a more robust estimate, we apply the model to nref = 10 randomly rotated copies oref

k of the
reference image and average the probabilities, i∗ = argmaxi

1
nref
∑

nref
k=1 pθ(i∣oref

k ).

2.3 Active Sample Selection Strategy

The decision which platform to explore next is made based on the model uncertainty. As described in
Sec. 2.1, we add dropout layers to Inception-v3 (see Fig. 2) to model the epistemic uncertainty [17]. By
querying the dropout network with the same input multiple times, we obtain different output samples
and can gauge the uncertainty by their distribution. We compare four sample selection strategies.
i) Random strategy is a non-active baseline that selects the next texture to touch according to a uniform
distribution. ii) Variance strategy selects the platform for which the variance of the class probability
predictions is the highest, inext = argmaxi

1
nref
∑

nref
k=1Varm∼p(m)[pθ(i∣oref

k ,m)], where p(m) is the
distribution of the dropout masks. iii) Entropy strategy selects the platform that contributes the most to
the class distribution entropy for the reference object inext = argmaxi

1
nref
∑

nref
k=1Em∼p(m)[−pki lnpki ]

where pki ∶= pθ(i∣o
ref
k ,m). iv) You Only Touch Once (YOTO) is a trivial baseline that does not sample

at all after the initial five touches, i.e., each object touched once. This baseline provides a reference
to quantify the ‘value’ of the actively gathered data.

3 Experimental Results

Our experiments aim at identifying what components of the algorithmic architecture matter for active
texture recognition with vision-based tactile sensors. For that, we evaluate model architectures and
the active sample selection strategies, and subsequently present a human study which investigates
human exploration strategies on the same task.

3.1 Active Texture Recognition
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Figure 4: Comparing different Inception-v3
models on the active texture recognition task.
Notably, the small Inception-S network performs
as well as the larger Inception-PT.

We compare the three network architectures (Sec. 2.1)
and the four active sampling strategies (Sec. 2.3). Each
model is trained for 210 epochs, 10 epochs after cre-
ating a baseline and then 10 more epochs after resam-
pling in each of the 20 rounds. For all three models, we
collect the results of five subsets of fabrics using the
four different strategies and average the performance
of each model. Figure 4 shows that the models perform
similarly. We believe the reason why pre-training is
not advantageous in this case is the retrospective addi-
tion of dropout layers, which the model was not trained
for. Since Inception-S shows strong performance, we
employ it in our further experiments. In Fig. 3, the
influence of the exploration strategies is investigated. The model performs best using Variance,
closely followed by Entropy and Random strategies. While YOTO performs quite well on the training
data after 20 rounds, its test prediction accuracy is only 80% on average.
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3.2 Human Study

Humans Variance Entropy Random YOTO
66.88%
±16.93%

90.00%
±15.24%

88.13%
±14.24%

89.38%
±14.35%

80.63%
±22.42%

Table 1: Comparison of the final accuracies achieved by the different
exploration strategies. Notably, all robotic strategies are superior to
humans, showing that the vision-based tactile sensor alone provides an
advantage over the human touch in this task. The exploration strategy
plays a relatively minor role.

To find out how well the pro-
posed tactile active recognition
method performs compared to
humans, we carry out an exper-
iment with ten human partici-
pants. We attempt to character-
ize human exploration strategies
using information-theoretic met-
rics, and see whether insights
from humans can be transferred to robots. During a trial, the participants are blindfolded and
can only use their fingertips to explore the fabric surfaces (see Fig. 1d). They indicate their response
by resting their finger on the chosen fabric. The data of this experiment and the code for analysis are
available online. Table 1 compares the prediction accuracies of the human participants and the robot.
For fair comparison, we only allow the robot to use the same number of touches that humans used.

3.3 Behavior Comparison Between Participants and the Robot

(a) inter-participant (b) participant-robot

Figure 5: Comparing the exploration strategies among partici-
pants and against the information-theoretic strategies. The num-
bers indicate the JSD between the distributions of time spent
over objects, averaged over trials. The inter-subject variability is
comparable to the subject-robot variability, therefore no uniform
judgement about what strategy all humans use can be made.

To compare the exploration strategies,
we formalize the problem by normaliz-
ing the time spent by the human partic-
ipants on each object per trial, to get a
distribution of relative times per fabric.
Subsequently, we employ the symmet-
ric Jensen-Shannon divergence (JSD) to
compare these time distributions, thereby
comparing human and robotic strategies
at least in this restricted sense. The
JSD takes values in the range [0,1].
The resulting distances of comparing the
robotic strategies to each other are 0.14
between Variance and Entropy, 0.12 be-
tween Entropy and Random, and 0.16

between Variance and Random. Thus, the Entropy strategy appears more similar to Random than
to Variance. While the distances between the robot strategies are in the range 0.12–0.16, the inter-
participant (Fig. 5a) and the participant-robot (Fig. 5b) distances are around 0.2 and higher.

4 Discussion & Conclusion
We have investigated the performance of a Bayesian approach to active sampling for fabric texture
recognition with vision-based tactile sensors. First, on our four-class recognition task, where the
network needs to adapt quickly with only a handful of training samples, we found that a smaller
model performs as good as the ImageNet-pretrained Inception-v3 (see Fig. 4). Thus, we conclude
that big pretrained networks are not necessary for few-shot recognition tasks. Second, we did not find
a significant difference between the considered exploration strategies. The random sampling strategy
showing similar performance suggests that our texture recognition task is relatively straightforward
for the vision-based tactile sensors, as opposed to humans using only one finger. These results
are in agreement with [10], where GelSight was shown to achieve a higher accuracy on material
roughness classification than human participants. Third, in the human study, we found that there is
a significant variability among the participants with regards to the exploration strategy (see Fig. 5).
The inter-participant variability was found to be similar to the participant-robot variability, meaning
that there is no universal exploration strategy that all participants have followed. On average, human
exploration behavior was closer to the information-theoretic strategies than to random exploration.

Limitations. Comparing human and robotic tactile perception is limited due to the different nature of
the sensors. However, this concern was addressed in [10], where human performance using touch was
compared to using GelSight images for material roughness classification. Humans were found to be
much better at classification using their sense of touch rather than vision. Our results further suggest
that the internal representations may be more important than the exploration strategy. Lastly, we only
tested our method on four comparison fabrics. However, we expect it to scale well to more textures.
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