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Abstract

In this paper, we present ViHOPE, a framework for estimating the 6D pose of
an in-hand object using visuotactile perception. In our framework, we employ a
conditional Generative Adversarial Network to complete the shape of an in-hand
object based on volumetric representation. This completed shape is then utilized to
estimate the 6D pose, demonstrating that our approach outperforms prior methods.
We assess the effectiveness of our model by training and testing on a synthetic
dataset. In both the visuotactile shape completion task and the visuotactile pose
estimation task, our approach outperforms the state-of-the-art by a significant
margin. We present our pivotal lesson learned: the value of explicitly completing
object shapes. Furthermore, we ablate our framework to confirm gains from explicit
shape completion and demonstrate that our framework produces models that are
robust to sim-to-real transfer on a real-world robot platform.

1 Introduction

Figure 1: A high-level overview of the proposed
framework. The green dots represent taxels of the
tactile sensors that are in contact. RGB image and
depth map are retrieved from an RGB-D sensor for
object segmentation and visual feature extraction.

An accurate 6D pose can benefit many applica-
tions, such as robotic manipulation (Qin et al.,
2022; Chen et al., 2022a), autonomous driv-
ing (Geiger et al., 2012), and social naviga-
tion (Chen et al.). Recent advances in deep
learning techniques promising results (Wang
et al., 2019a; Chen et al., 2022b; Hu et al., 2019).
These methods, when combined with iterative
refinement (Besl and McKay, 1992; Wang et al.,
2019a; Li et al., 2018), leverage the object’s
3D model to obtain a more accurate estimate.
However, many methods find the presence of
intermediate to extreme occlusions challenging,
particularly in dexterous manipulation where
the object is being held, grasped, or sometimes
completely obscured by the robot hand.

In an effort to improve the quality of reception, researchers have explored the use of tactile sen-
sors(Bimbo et al., 2016; Dikhale et al., 2022; Villalonga et al., 2021). Villalonga et al. (2021) leverage
a template-based approach to match the visuotactile observation with the rendered shapes. Dikhale
et al. (2022) use visuotactile data and utilize an end-to-end deep neural network and address the 6D
pose estimation as a regression problem. However, they do not explicitly leverage the 3D geometry
of the object.
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To this end, we introduce ViHOPE—Visuotactile In-Hand Object Pose Estimator (Fig. 1). ViHOPE
takes visuotactile observation as input and explicitly optimizes the object shape while estimating
the pose. We hypothesize that jointly optimizing the shape and pose of the object will provide more
accurate estimates of the 6D pose of the object. Additionally, during deployment, by providing
an estimate of the complete shape of the in-hand object, it increases explainability and potentially
expands the range of applications, such as grasping (Varley et al., 2017). Specifically, we first train
an autoencoder to capture the geometry prior of the object and encode the object shape into a latent
space. We then leverage a GAN to transfer the latent code from the partial shape space to that of the
complete shape. We then use the estimated complete latent code, and the visual feature to estimate
the 6D pose.

We conduct experiments on a synthetic dataset by Dikhale et al. (2022) and a physical robot platform.
We evaluate the performance of ViHOPE on two tasks: shape completion and pose estimation. In
the shape completion task, we show improved performance by a large margin compared with the
prior work (Watkins-Valls et al., 2019), where our model faithfully reconstructs the complete shape
even under heavy occlusion. In the pose estimation task, we demonstrate our model outperforms the
state-of-the-art visuotactile pose estimator (Dikhale et al., 2022). We also present results of ablation
studies, in which we remove the shape completion module to confirm the effectiveness and robustness
of our approach, which explicitly optimizes shape.

Figure 2: The proposed framework consists of three phases. Phase one trains the autoencoder (the
blue box) in isolation to learn a shape prior. Phase two trains the shape completion module (the
orange box) with frozen weights for EAE and DAE from phase one. Phase three uses the completed
shape (in latent space) to estimate the object’s pose in an end-to-end manner.

2 Methodology

Our objective is to determine the 6D pose of an object based on an image, its corresponding depth
map, and tactile feedback from the robot hand. We assume the 3D model of the object is available
during training.

The proposed visuotactile pose estimation framework consists of: a visuotactile shape completion
module and a pose estimation module. We provide a high-level overview in Fig. 2. The shape
completion module explicitly optimizes the object’s shape from a partial observation of the object
from the vision and tactile sensors (Section 6.1). The pose estimation module uses the output of the
shape completion module, in the form of latent code, along with the visual features and point cloud
normalization scalars to estimate the 6D pose of the object (Section 6.2).

3 Experiments

Our experiments are designed to assess the efficacy of our proposed framework: 1) in the level of
accuracy achieved by our shape completion module in reconstructing object shapes; 2) the impact of
explicit shape completion on the quality of 6D pose estimation; 3) the contribution of each component

2



of the framework to pose estimation accuracy; and 4) the sensitivity of the framework to variations in
occlusion levels and tactile contact points. This section outlines our experimental setup including
model training and performance evaluation. The model was trained and tested on a synthetic dataset,
and then transferred to a real physical robot to study the framework’s robustness in sim-to-real
transfers. We refer readers to our supplementary Sec. 6.3 for more experiment design details.

4 Results

4.1 Shape Completion

Table 1: Quantitative shape
completion result.

Method IoU ↑ CD ↓
Watkins-Valls et al. (2019) 0.142 0.125
Vision Only 0.341 0.042
ViHOPE (Ours) 0.519 0.015

We compare our shape completion module with the seminal work
from Watkins-Valls et al. (Watkins-Valls et al., 2019) using two
metrics: Intersection over Union (IoU) and Chamfer Distance (CD).
We implement their proposed model (Varley et al., 2017; Watkins-
Valls et al., 2019) using PyTorch with a minor modification. To
ensure a fair evaluation, a consistent voxel occupancy grid resolution
was used. Our implementation utilizes a 323 voxel grid for input
and output, instead of the 403 voxel grid utilized in the original
work. This modification allowed seamless integration of the shape completion module into our
established pipeline. Results in Table 1 show a 265.5% increase in IoU and an 88% decrease in CD,
demonstrating the robustness of our model under challenging conditions.

We also evaluate the performance of the shape completion model by removing the tactile modality
(Vision Only). The result suggests the significance of tactile modality for completing the shape of an
in-hand object. We provide additional qualitative results in Fig. 5.

4.2 6D Pose Estimation

Table 2: A comparison of our approach with the state-of-the-art is presented in the first half of the
table, followed by the results of our ablation studies in the second half. The modalities used by the
methods are highlighted in the second column.

Method Modalities Position Error (cm) ↓ Angular Error (deg) ↓ ADD (cm) ↓ ADD-S (cm) ↓RGB point cloud tactile
PoseCNN (Xiang et al., 2018) 6.146 ± 0.023 10.897 ± 0.082 - -
DenseFusion (Wang et al., 2019a) 0.640 ± 0.004 9.969 ± 0.117 1.037 ± 0.008 0.571 ± 0.003
ViTa (Dikhale et al., 2022) 0.299 ± 0.002 8.074 ± 0.105 0.825 ± 0.007 0.474 ± 0.002
No-Shape-Completion 0.258 ± 0.018 4.104 ± 0.049 0.400 ± 0.019 0.282 ± 0.018
No-Vis-GAN 1.613 ± 0.333 4.132 ± 0.058 1.745 ± 0.333 1.623 ± 0.332
No-Vis-MLP 0.156 ± 0.001 5.677 ± 0.083 0.403 ± 0.004 0.214 ± 0.001
No-Tactile 1.614 ± 0.015 17.228 ± 0.165 2.023 ± 0.017 0.774 ± 0.009
No-Point-Cloud 0.861 ± 0.010 14.245 ± 0.096 1.478 ± 0.011 0.655 ± 0.009
ViHOPE (Ours) 0.194 ± 0.009 2.873 ± 0.036 0.298 ± 0.009 0.214 ± 0.008

4.2.1 Comparsion with state-of-the-art

We compare the performance of our pose estimation network with two seminal works: i) the
visuotactile-based estimator (ViTa) (Dikhale et al., 2022), and ii) the RGB-D-based estimator, Dense-
Fusion (Wang et al., 2019a). In Fig. 3, we provide a per-instance numerical analysis on 11 YCB
objects. Our approach outperforms ViTa and DenseFusion by a large margin on each object with
statistical significance, suggesting explicit shape optimization is more effective compared to implicit
methods.

4.2.2 Performance under different occlusion level

We evaluate the performance of our model under different levels of occlusion. The results of our
evaluation are presented in Fig. 4, where it can be observed that the model demonstrates a robust
performance in the presence of increasing levels of occlusion. It is worth noting that our method
maintains its performance as compared to ViTa, which suggests that our model is able to handle
occlusion effectively and still produce competitive performance. We further evaluate the performance
by removing the tactile modality (Vision Only). The result confirms the significant contribution of
tactile modality under severe occlusions.
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Figure 4: Left: Performance under different levels of occlusion. Right: The performance of
our approach under different levels of tactile contact points. The dashed gray line represents the
performance of ViTa using 1000 tactile contact points.

4.2.3 Performance under different tactile points

Figure 3: Performance comparison with
the state-of-the-art.

The spatial resolution of real-world tactile sensors can
vary significantly. Therefore, we analyze the performance
of our model under different tactile contact points (Fig. 4).
It is noteworthy that our model, which was trained with
80 tactile points, demonstrates robust performance when
presented with a reduced number of points. As expected,
the performance of the model deteriorates as the number
of tactile points is reduced and drops significantly when
the tactile modality is removed entirely. It is worth noting
that compared to ViTa, which requires tactile input, our
model can still provide pose estimation even without tac-
tile feedback, although with degraded performance. Upon
analyzing the position error, we observe that, up to a re-
duction of 40 tactile points, our model outperforms ViTa,
which uses 1000 points. The angular error results show
that our model consistently outperforms ViTa.

4.2.4 Ablation Studies

We perform ablation studies to examine the effectiveness
of our design choices (Table 2). A more detailed analysis
of our ablation study results is in supplementary Sec. 6.4.

4.2.5 Real-world experiment

We validate the sim-to-real robustness of our framework using our robot platform, with a subset of
YCB objects that could be grasped by the Allegro Hand. The hand moves along a trajectory covering
different poses. We apply a novel hand-grasping pose that doesn’t exist in our training dataset, which
shows our model’s ability to generalize. Our model efficiently operates at 11.2ms / 89Hz using an
NVIDIA RTX 6000, thus capable of real-time deployment. We provide a visualization of the result
in supplementary Sec. 6.6.

5 Conclusion

We presented ViHOPE, a novel framework for estimating the 6D pose of an in-hand object using
visuotactile perception. We focus on instance-level pose estimation in this paper. In the future, we
are interested in extending our pose estimator to work on more challenging scenarios, for example,
lack of annotated data Zhang et al. (2022), and category-level pose estimation Wang et al. (2019b).
Another interesting future direction is incorporating other sensory information, such as pressure.
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6 Supplementary Material

6.1 Shape Completion

Our framework starts from a volumetric shape completion module, which consists of two steps: 1)
learning a shape prior from the object model, i.e., full observation, 2) recovering the complete shape
by learning a mapping from partial observation to a complete one, in the latent space.

6.1.1 Learning the shape prior

We first train an autoencoder (the blue box in Fig. 2) to capture the shape prior of the object. To
capture the prior under different orientations, we apply random SO(3) rotations to the object O, and
voxelize it to form an augmented dataset. The autoencoder consists of two components: an encoder
EAE and a decoder DAE . The encoder encodes the input voxel occupancy grid V ∈ Rnx×ny×nz

into a latent code lv ∈ Rnl using a set of 3D convolutional layers. The decoder recovers the original
voxel occupancy grid from the latent code as V̂ ∈ Rnx×ny×nz using symmetrical 3D deconvolutional
layers. We apply a batch normalization layer after each layer, followed by a ReLU activation function.
We set nx = ny = nz = 32 and nl = 128, empirically, and optimize the autoencoder model using
the Jaccard index loss

LAE = 1− |V c ∩DAE(EAE(V
c))|

|V c ∪DAE(EAE(V c))|
. (1)

Note, higher voxel grid resolution can improve accuracy but comes with increased computation and
memory costs. Some works have explored methods to mitigate these costs (Tatarchenko et al., 2017;
Li et al.); however, such optimization techniques are beyond the scope of this work.

6.1.2 Recovering the complete shape

After training the autoencoder to convergence, we optimize the entire shape completion model (the
orange box in Fig. 2). The encoder EAE and the decoder DAE of the shape completion module are
initialized with the weights from the previous step and are frozen in this step (Wu et al., 2020).

The inputs to the shape completion model consist of occluded observational data, that is, a partial
visuotactile point cloud P p ∈ R3×N and an RGB image I ∈ RH×W×3. We first obtain a semantic
segmentation mask S of the object O using the RGB image I. We then segment the depth map D
using the mask S as Dp and transform Dp to its respective point cloud form PD. Combining the
point cloud PD with the tactile point cloud P T , we obtain the observation P p = PD ∪ P T of the
object O. To improve the training efficiency, we first normalize the input partial point cloud P p using
its centroid µp ∈ R3 and the farthest distance from the centroid σp ∈ R. The normalized point cloud
is voxelized as V p and encoded using the frozen encoder EAE into a partial latent vector lpv in the
partial latent space Mp. During training, we use the ground-truth complete voxel grid V c to calculate
the losses.

To recover the complete shape from the partial observation, we seek a mapping for shape latent
code from the partial latent space to the complete latent space Mp 7→ Mc. Inspired by Wu et al.
(2020), we find the mapping using a cGAN (Mirza and Osindero, 2014). We condition the cGAN
on the partial latent vector lpv and the visual feature fi, which is extracted from the input image I
using a pretrained ResNet (He et al., 2016) feature extractor FEI . FEI is finetuned during the
training period and regularized by a dropout layer. The dropout layer is only activated during training
and deactivated during testing. Therefore our generator is trained as G : (Mp, p(fi)) 7→ Mc. We
pass the estimated complete latent vector l̂cv ∈ Mc from the generator to the discriminator F along
with the ground-truth complete latent vector lcv, obtained by applying the same procedure on the
ground-truth complete point cloud P c. Having the same conditioning as G, the discriminator F is
trained as a binary classifier to distinguish the real complete latent vector lcv and the fake complete
latent vector l̂cv. At the end, we feed the estimated complete latent vector l̂cv into the frozen decoder
DAE to reconstruct the complete shape V̂ c.

The shape completion model is optimized using three losses: the discriminator loss LF , the generator
loss LG, and the reconstruction loss LRecon

G . The discriminator loss penalizes the discriminator if
it can’t distinguish the real and fake latent vectors. On the other side of this min-max game, the
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generator loss encourages the generator to fool the discriminator. We leverage the loss functions from
LSGAN (Mao et al., 2017) to stabilize the training

LF = EV c,I [FcGAN (EAE(V
c), FEI(I))− 1]2

+ EV p,I [FcGAN (GcGAN (EAE(V
p), FEI(I)))]2

(2)

LG = EV p,I [FcGAN (GcGAN (EAE(V
p), FEI(I)))− 1]2. (3)

To further stabilize the GAN training and guide the model, we include the reconstruction loss LRecon
G

that directly measures the differences between the ground-truth complete shape V c and the estimated
complete shape V̂ c ≜ DAE(GcGAN (EAE(V

p), FEI(I))) using Jaccard index loss

LRecon
G = 1− |V c ∩ V̂ c|

|V c ∪ V̂ c|
. (4)

Therefore, the overall training objective for our shape completion model is

argmin
G,FEI

argmax
F

LF + LG + αLRecon
G , (5)

where α is the weight for the reconstruction loss.

6.2 Pose Estimator

We use two simple four-layer MLP models to estimate the pose of the object. Our pose estimators T t

and T r take the estimated complete shape latent code l̂cv, visual features fi, normalization factors
µp and σp, and a skip connection from partial latent lpv as input and estimate the 3D translation
residual t̂r ∈ R3 and 3D rotation in quaternion form R̂ ∈ R4, respectively. Note, similar to the prior
works (Wang et al., 2019a; Dikhale et al., 2022), instead of estimating the absolute translation t, we
estimate the residual of the translation tr = t−µp. We use the residual pose P̂r = [R̂|t̂r] to calculate
the point cloud loss LP (Wang et al., 2019a):

LP =
1

k

∑
x∈K

||(Rx+ tr)− (R̂x+ t̂r)||, (6)

where K denotes a set of points randomly sampled from the object’s 3D model, and k represents the
cardinality |K|. The point cloud loss minimizes the distance between the points on the ground-truth
pose and their respective points on the models transformed using the estimated pose. The overall loss
function is shown in Equation 7,

argmin
G,FEI ,T t,T r

argmax
F

LF + LG + αLRecon
G + βLP , (7)

where β is the weight for the point cloud loss.

To speed up convergence, our method is trained in four steps: i) The autoencoder (EAE +DAE) is
trained in isolation, and weights are frozen; ii) The shape completion module (G+ F ) is trained; iii)
The pose estimator (T t + T r) is trained while freezing the shape completion module; iv) the shape
completion module in unfrozen and trained end-to-end (G+ F + T t + T r), similar to (Liang et al.;
Gervet et al., 2023).

6.3 Experiment Details

Synthetic Dataset We use VisuoTactile synthetic dataset from Dikhale et al. (2022) to train our
framework. In this dataset, a subset of 11 YCB objects (Calli et al., 2015) are selected based on their
graspability. A total number of 20K distinct in-hand poses are simulated per object. In particular,
Unreal Engine 4.0 has been used to render photo-realistic observational data of a 6 DoF robot arm
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with a 4-fingered gripper equipped with 12 32x32 tactile sensors (3 per finger). A main RGB-D
camera captures images of the robot holding an object. Each tactile sensor captures object surface
contact points in a point cloud format. Each data sample is generated by randomizing the in-hand
object pose, the robot fingers configuration, and the robot arm orientation and position. Domain
randomization is also applied for the color and pattern of the background and workspace desk.

Real Robot We test our model on the Allegro Hand (Wonik Robotics) and the Sawyer robot arm
(Rethink Robotics). Our Allegro Hand is instrumented with the uSkin 4x4 tactile sensors and uSkin
Curved tactile sensors from XELA Robotics. Each finger has three 4x4 tactile sensors (16 taxels) and
one Curved tactile sensor (30 taxels). We use a Microsoft Kinect V2 camera to collect RGB-D data.

Implementation Details We utilize an ImageNet pre-trained ResNet-34 model as our visual feature
extractor FEI . We apply center crop, Gaussian blur, and color jitter augmentations to the input image.
We implement our pose estimators T r and T t using four-layer MLPs with layers of [512, 256, 32, 4]
and [512, 256, 32, 3], respectively. We trained our autoencoder for 500 epochs, shape completion
module for 1000 epochs, pose estimator for 1000 epochs, and the entire end-to-end model for 2000
epochs using the Adam optimizer with a learning rate of 1×10−3, 5×10−4, 1×10−3, and 5×10−5,
respectively. We set the reconstruction loss α and the point cloud loss β (Equation 7) to 30 and 5000,
respectively.

6.4 Ablation Studies Analysis

In this section, we provide a more detailed analysis of the ablation studies results shown in Tab. 2.

No-Shape-Completion To evaluate the contribution of explicit shape completion, we remove the
shape completion module from our proposed framework, which is achieved by feeding the partial
latent vector lpv to the pose estimator instead of the complete vector l̂cv. Our ablation result shows
that by removing the shape completion module, the position error drops by 24.8%, and the angular
error drops by 30.0%, suggesting, jointly and explicitly optimizing the shape and the pose during
visuotactile pose estimation is effective.

No-Vis-Gan To analyze the gain from visual cues in the shape completion module, we remove
the visual feature conditioning fi. We observe that removing the visual conditioning from the shape
completion module resulted in a significant deterioration of performance, highlighting the importance
of incorporating visual cues. The study shows that, without visual cues, the partial geometry feature
is ambiguous for inferring the complete shape under heavy hand occlusion.

No-Vis-MLP To examine the contribution of visual features in pose estimators, we remove the
visual feature input from the pose estimators. We notice that removing the visual features degrades
the angular error performance. This makes sense because our dataset contains symmetrical objects.
The object geometry alone is insufficient for accurately determining the pose of symmetrical objects,
such as a mustard bottle, which requires the utilization of visual features to distinguish between its
front and back.

No-Tactile & No-Point-Cloud Two separate studies were conducted to evaluate the contribution of
the tactile points P T (No-Tactile) and the point cloud from the vision sensor PD (No-Point-Cloud).
Our results suggest a significant drop in performance when either the tactile points or the point cloud
input from the visual sensors is removed, emphasizing the significant contribution of both modalities
to pose estimation.

6.5 Qualitative Results on Shape Completion

Fig. 5 represents a visualization of the input and output of our shape completion module, which uses
visuotactile observations to faithfully complete the shape of the in-hand object.

6.6 Real-world Experiment

In Fig. 6, we show three consecutive frames of the Allegro Hand holding a scissor. Our model could
accurately estimate the 6D pose of the in-hand object, given a noisy and partial segmentation mask. In
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(a) Camera View (b) Partial Shape (c) Completed Shape (d) Ground Truth

Figure 5: Visuotactile shape completion results. The gray and red voxel represents RGB-D and tactile
observations, PD and P T , respectively. From left to right, we show the cropped RGB image from the
main camera, the observed partial shape of the in-hand object, the completed shape by our approach,
and the ground-truth shape.

the bottom row, we demonstrate a failure case of our method where the estimated pose of the scissors
is flipped 180 degrees due to the near-symmetrical geometry and visual feature of the scissors. We
refer readers to our supplementary videos for our experiment videos that include more objects and
real-time quantitative comparisons.
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