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Abstract

Placing objects on flat surfaces is a crucial skill to master for robots in house-
hold environments. Common object-placing approaches require either complete
scene specifications or (extrinsic) vision systems, which occasionally suffer from
occlusions. Rather than relying on indirect measurements, we propose a novel
approach for stable object placing that leverages tactile feedback from an object
grasp. We devise a neural architecture called PlaceNet that estimates a rotation
matrix, resulting in a corrective gripper movement that aligns the object with the
placing surface for the subsequent object manipulation. Our evaluation compares
different sensing modalities to each other and PlaceNet to classical, non-learning
approaches to assess whether a data-driven approach is indeed required. Applying
PlaceNet to a set of unseen everyday objects reveals significant generalization
of our proposed pipeline, suggesting that tactile sensing plays a vital role in the
intrinsic understanding of robotic dexterous object manipulation.

1 Introduction

This work studies the benefit of local tactile measurements between gripper and object for stable
and reliable object placing. Stable object placement is an essential skill for any autonomous robotic
system, particularly for capable assistive household robots. It forms the basis for many tasks, such
as object rearrangement, assembly, sorting, and storing goods. While a large body of prior works
exists on stable object placing (Jiang et al. [2012], Harada et al. [2012], Ma et al. [2018], Mitash
et al. [2020], Manuelli et al. [2019], Haustein et al., Newbury et al. [2021]), none of those works
investigate the contribution of tactile feedback in stable placing. Rather, they rely either on vision
systems, which are prone to occlusions and require external sensors, or accurate scene descriptions,
which demand cumbersome manual labor. We attempt to fill this gap by investigating the impact of
tactile sensing in this simple yet challenging scenario. In this work, we utilize the TIAGo robot with
a parallel-jaw gripper and Myrmex sensors (Schürmann et al. [2011]) as fingers.

Our method comprises a deep convolutional neural network called PlaceNet that predicts a corrective
rotation action for the gripper from the Myrmex readings, which is then executed to align the object
with the placing surface correctly. In an extensive evaluation, we compare tactile to F/T sensor
readings and the learning-based approach to two classical baseline models. The main contributions
are twofold; (i) the development and training of tactile-based policies for stable object placing without
requiring any extrinsic visual feedback, and (ii) an open-source suite of our dataset, CADs, pretrained
models, and the codebase of all methods (both classical and deep learning ones) from our extensive
real-robot experiments. Overall, our study confirms that tactile sensing can be a powerful and valuable
low-cost addition to robotic manipulators: their signals provide features that increase reliability and
robot dexterity.
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(a) Schematic overview of the four phases of
stable object placing. Components relying on
tactile data are highlighted, as well as those
utilizing motion planning and execution.

(b) Overview of PlaceNet, our neural architecture. Tac-
tile measurements from both sides of the gripper are
stacked along the channel dimension of the convolu-
tional layers.

Figure 1: Schematic overview of our placing methods (left) with a detailed depiction of we estimate
RG

O′ using a neural network

2 Related Work

Object placing. Stable object placing is a crucial skill for autonomous robotic systems. Many works
have therefore focused on modeling or learning it, although most rely on vision as input, such as
Harada et al. [2012], Jiang et al. [2012], Manuelli et al. [2019] and Mitash et al. [2020]. Haustein
et al. presents a planning algorithm for stable object placement in cluttered scenes requiring a fully
specified environment. Closely related to our work is that of Newbury et al. [2021], which presents
an iterative learning-based approach for placing household objects onto flat surfaces but again using
a system of three external depth cameras for input. Relying on image data might be problematic due
to gripper-object occlusions in highly cluttered scenes, and tedious, time-consuming robot-camera
calibrations. In contrast, tactile sensors directly provide the contact information between the object
and gripper, independent of the surrounding environment.

In-hand object pose estimation. Due to the inherent difficulties of estimating a grasped object’s
pose and due to its importance for tasks like pick & place or in-hand manipulation, multiple methods
for object-in-hand pose estimation have been developed. In this area, tactile-based models (Bimbo
et al. [2016], Kelestemur et al. [2022]) and tactile-vision (Álvarez et al. [2017], Anzai and Takahashi
[2020]) hybrids are more prominent. Doosti et al. [2020] and Sodhi et al. [2022] present end-to-end
approaches based on RGB images. In contrast to many of these works, we are not interested in the
full 6D object pose, but rather its orientation relative to a placing surface. This allows us to employ a
small and efficient neural network that is not as demanding in terms of data,

3 Stable Object Placement

Fig. 1a shows the four phases of stable object placement, starting with the object state estimation
in the first phase. We define the object’s placing normal z⃗p = RW

O RO
O′ z⃗ = RW

O′ z⃗ to lie along
the z⃗-axis in the so-called local object placing frame O′ with the rotation matrix from a reference
frame, e.g. “world”, to the object placing frame given by RW

O′ ∈ SO(3). RW
O′ can be decomposed

as RW
O′ = RW

G RG
O′ , where G denotes the gripper frame, whose pose w.r.t. worl is usually known

from proprioception. It thus suffices to estimate RG
O′ to correct the object pose. This necessitates

estimating the object’s in-hand pose at least partially in order to generate the desired corrective
motion. Assuming RG

O′ is known, an IK solution can then be computed that moves the gripper to a
pose that aligns the two placing normals. Then, the placing motion is planned and executed that move
the object towards the table while preserving its orientation to the world frame. Once table-object
contact is detected, the object is released and the arm retracted.

Then, the placing motion is realized by executing a linear downward movement in Cartesian space.
In our case, we simply use TIAGo’s torso lift for this motion, while constraining IK solutions to be
elbow-up such that the gripper will be the first part of the arm that will acquire table contact. During
the motion, the grasping forces are monitored, where an unexpected spike is interpreted as table
contact acquisition, which terminates the torso trajectory. Finally, we open the gripper and drive the
torso up again to retract.



Table 1: Comparison of different placing methods on the two 3D-printed training objects (cf. Fig. 2a). The
angular error is the angle between the predicted z⃗p and the one measured with OptiTrack, given in radians.

Method Metric Cylinder Cuboid Average

OptiTrack
% Suc.

Ang.Err.
90%

-
95%

-
92.5%

-

Tactile
PlaceNet

% Suc.
Ang.Err.

95%
0.06 ± 0.03

85%
0.17 ± 0.12

90.0%
0.11 ± 0.08

Tactile + F/T
PlaceNet

% Suc.
Ang.Err.

90%
0.08 ± 0.04

85%
0.16 ± 0.19

87.5%
0.12 ± 0.08

F/T
PlaceNet

% Suc.
Ang.Err.

15%
0.38 ± 0.26

25%
0.39 ± 0.32

20.0%
0.38 ± 0.29

PCA
(Tactile)

% Suc.
Ang.Err.

90%
0.07 ± 0.02

10%
0.83 ± 0.42

50%
0.45 ± 0.22

Hough
(Tactile)

% Suc.
Ang.Err.

80%
0.09 ± 0.04

10%
0.76 ± 0.37

45%
0.42 ± 0.21

To estimate the object rotation w.r.t the gripper frame RG
O′ , we propose to use a convolutional neural

network. Tactile data from the two gripper-mounted Myrmex sensors is represented as a 16 × 16
matrix of normal force readings that are normalized in [0, 1]. To process the tactile data, we first use
two convolutional layers with a 3× 3 kernel each, and 16 and 32 output channels respectively. The
output of the last convolutional layer is then fed to a Multilayer Perceptron (MLP) consisting of two
hidden layers with 128 neurons each and ReLU activation functions, followed by a dropout layer with
a dropout probability of p = 0.2. F/T data can be optionally fed into the MLP as an additional input
signal, which is concatenated with the tactile features. The general architecture of PN is visualized in
Fig. 1b, including Myrmex sensor samples on the left. To smoothly represent the rotation matrix in
the output layer, we use the 6D representation comprising the first two columns of RG

O′ , as introduced
in Zhou et al. [2019], as well as a slight variation of their loss function which ignores rotation errors
around the placing normal.

4 Experimental Evaluation

We used two primitive 3D-printed objects for data collection as shown on the left in Fig. 2a. The
in-hand object poses RG

O′ were measured by OptiTrack, an external camera-based tracking system.
Data was collected for different arm postures and object in-hand poses, amassing 800 samples per
object and 1600 in total. We trained every PlaceNet for 40 epochs and reserved 20% of the data for
testing. The tactile-only PlaceNet (PN) and tactile with F/T PN achieved a test error of 0.03 rad
and 0.05 rad respectively, indicating that they were able to estimate the object orientation with high
precision. On the other hand, the F/T-only PN performed rather poorly with a minimum test error of
0.43 rad, indicating that F/T data alone is not sufficient to estimate the object state. To assess whether
a data-driven model is required to solve this task robustly and to gauge its performance compared
to other approaches, we introduce two baseline models for comparison. Given the nature of our
sensory data, line-fitting methods naturally come to mind. We chose two popular methods from that
field, Principal Component Analysis (PCA) (Pearson [1901]) and Hough transforms (Duda and Hart
[1972]). For the real-world evaluation of placing success, we let each method place an object from
5 different arm poses and 4 different in-hand object poses, yielding 20 samples per object for each
method (see Fig. 2b). We report the estimation accuracy by again using OptiTrack to measure the
object pose and the success rate of the actual placing trials.

We first compare the OptiTrack baseline with all three PlaceNets (PNs) and the two line-fitting
baselines on the training objects. Evaluating 6 methods on the two 3D-printed training objects and
conducting 20 trials per object results in 240 placing trials overall. Table 1 shows the results. We
can compare the OptiTrack baseline to the other methods based on success rate and the angular
error between their predictions of the object normal and OptiTrack’s ground-truth measurement for
z⃗Gp . A surprising result is that the tactile-only PN performed better in terms of success rate than the
OptiTrack baseline, which can be attributed to occasional marker loss due to occlusions and imperfect
IK solutions. Among the neural networks, the tactile-only PN performed best in almost all metrics.
The evaluation also confirmed another indication from training, namely that the F/T-only PN did not
succeed in estimating the object’s placing normal sufficiently well for stable placing. The baselines
perform well on cylindrical objects, and PCA even comes close to PN performance, while showing
difficulties in estimating the cuboid object’s pose, likely because cuboid objects create less distinct
line patterns in the sensor image.



(a) Objects used during data collection (left) and for out-of-distribution
evaluation (right).

(b) Variations of in-hand object poses
used during evaluation.

Figure 3: Experiment objects and object poses used for evaluation and data collection.
Method Metric Pringles Glue Bottle Tabasco Mallow Pop Cheez It Shampoo Lipstick Average

Tactile PlaceNet
% Suc.

Ang.Err.
90%

0.07 ± 0.03
85%

0.08 ± 0.04
85%

0.10 ± 0.13
80%

0.16 ± 0.10
80%

0.10 ± 0.06
85%

0.06 ± 0.03
90%

-
85%

0.09 ± 0.07

Tactile + F/T PlaceNet
% Suc.

Ang.Err.
85%

0.13 ± 0.20
80%

0.09 ± 0.04
70%

0.16 ± 0.10
70%

0.14 ± 0.10
85%

0.05 ± 0.06
75%

0.10 ± 0.06
80%

-
77%

0.12 ± 0.10

PCA (Tactile)
% Suc.

Ang.Err.
90%

0.08 ± 0.06
90%

0.07 ± 0.03
15%

0.79 ± 0.61
20%

0.70 ± 0.45
80%

0.09 ± 0.05
75%

0.08 ± 0.0
85%

-
65%

0.30 ± 0.24

Hough (Tactile)
% Suc.

Ang.Err.
85%

0.11 ± 0.06
80%

0.10 ± 0.03
60%

0.20 ± 0.30
50%

0.35 ± 0.37
70%

0.12 ± 0.08
70%

0.16 ± 0.32
80%

-
70%

0.17 ± 0.17

Table 2: Experimental results for seven household testing objects (cf. Fig. 2a). All objects were unknown to
the models before this evaluation, i.e., they were not present in the training set. Angular errors are reported in
radians.
After confirming the training results on the real robot in our first experiment, we conducted a second
evaluation on objects that were not present in the training data using the most promising models
from the previous experiment. We only evaluated the two best PlaceNets (PNs) from the previous
experiment, namely the tactile-only PN and the tactile with F/T PN, along with the baselines. We
evaluated the 4 methods on 7 (see Fig. 2a on the right side) different household objects for 20 trials
each, hence performing 560 placing trials in total, with results given in Table 2. We, again, report
the success rate of correct placements and the angular error between the model’s predictions and
OptiTrack where possible (the lipstick was too small to attach a marker to). The PNs perform very
well on most unknown objects, indicating that our method generalizes across object primitives of
unknown dimensions. Similar to the results from the previous evaluation on known objects, the
tactile-only PN showed superior performance in most cases, as it performed best on average in both
metrics with a low variance in results. The tactile + F/T PN only performed better in terms of both
metrics when placing the Cheez-It box. We hypothesize that the slightly worse performance might
result from the network receiving rather non-informative F/T signals alongside the tactile data.

PCA and Hough both showed similar results to the first experiment. While Hough’s performance
does not show such a large difference between cuboids and cylinders as PCA, it did not manage to
achieve satisfactory results consistently. Finally, all models showed reasonable to good performance
on the Lipstick, an object that is difficult to place due to its small placing faces. The tactile-only
network performed best among all methods, further underlining its generalizability.

5 Conclusion

Our results show that tactile data is a crucial source of information for predicting the object’s placing
normals, whereas F/T data has not been proven to be as informative for this task. Furthermore,
our evaluation has shown that the PNs generalize to unknown objects with high success rates and
precision. It also revealed that classical approaches can work reliably on a set of objects with specific
characteristics (cylinders) while not being accurate enough on objects that lack these (boxes). Future
work might extend our approach to incorporate active touch scenarios where the object is already in
contact with a placing surface. This could make it applicable to a larger variety of objects, e.g. those
that cover the whole sensor surface and render line fitting impossible.
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Appendix

Stable object placing

As illustrated in Fig. 4a, we define the object’s placing normal z⃗p = RW
O RO

O′ z⃗ = RW
O′ z⃗ to lie along

the z⃗-axis in the so-called local object placing frame O′ with the rotation matrix from a reference
frame, e.g. “world”, to the object placing frame given by RW

O′ ∈ SO(3). RW
O & RO

O′ , thus, describe
the rotation matrices from the world to the object frame, and from the object frame to the object’s
placing frame, respectively. Note that we deliberately introduce this local object placing frame O′, in
addition to the object’s pose frame O, for two reasons. On the one hand, there might exist multiple
placing frames per object, and on the other hand, to highlight that knowing the object’s pose might
not be informative enough for stable placing, for instance, in the case of lacking precise information
about the object’s geometry. Since we only consider scenarios where the object was already grasped,
RW

O′ can be decomposed into two distinct rotation matrices

RW
O′ = RW

G RG
O′ , (1)

where RW
G ,RG

O′ ∈ SO(3) describes the orientation of the gripper w.r.t. the world and the object’s
placing frame within the gripper, respectively. While the former can be reliably estimated via
forward kinematics from proprioceptive feedback, the latter is usually unknown. Here, we make
the assumption, that one suitable placing face of the object is oriented toward the ground, which
is generally the case after grasping or human-robot object handovers of various household objects.
Thus, RG

O′ has to be estimated based on sensor measurements as it is an indispensable ingredient for
generating a motion that corrects the object misalignment and enables appropriate placing.

Next, we require a placing controller that, given RG
O′ , generates two movements: a corrective arm

movement that aligns z⃗p with z⃗s (cf. Fig. 4b) and a downward placing motion that stops on table
contact and releases the object afterward. For the corrective movement, we first project z⃗s into the
local gripper frame:

z⃗Gs = RG
W z⃗ (2)

Then, we calculate the rotation RG
G′ that rotates the current gripper frame such that in the resulting

one (G′), z⃗G
′

p aligns with z⃗G
′

s . This is achieved by finding the rotation axis with a⃗ = z⃗Gp × z⃗Gs and
the rotation angle θ = cos−1(z⃗Gp · z⃗Gs ), with the vector cross-product ×. Using the rotation RG

G′ , we
can try to find an inverse kinematics (IK) solution that realizes the object reorientation.

An IK solution that leads to a secure placing configuration should satisfy more constraints than the
object reorientation alone. After reorientation, we will execute a linear downward movement in

(a) Frames and placing normal (b) Corrective object motion

Figure 4: Illustration of the problem setting. (a) shows the gripper frame G, a possible object placing
frame O′ and the surface’s placing normal z⃗s. (b) Result of the corrective motion is to align the object
with the placing surface based on the estimation of RG

O′ .



(a) Left Myrmex Sensor (b) Right Myrmex Sensor

Figure 5: Raw sensor readings of both Myrmex sensors while holding the cylindrical object. Each
reading of the 16×16 taxels corresponds to the currently measured normal force. The images were
scaled up, and the force readings were amplified for visualization purposes.

Cartesian space to acquire table-object contact, and we need to ensure that the object will be the
first point of contact with the table. Arm configurations suitable for placing thus need to ensure
that the object frame (located in the gripper) has a lower z-coordinate in the world frame than
the wrist. The commonly used hierarchy-of-tasks approach Slotine and Siciliano allows us to
formulate such additional constraints for the IK. Since many IK solvers are sensitive to the initial arm
configuration, we searched for solutions starting from 20 different initial poses, which are sensible
placing configurations, and chose the one with the lowest error that is most similar to our current arm
pose. The motion to reach this solution is generated by linear interpolation in joint space starting
from the robot’s current arm position.

For the placing motion, a trajectory is generated that moves the gripper linearly downward. This
is realized using TIAGo’s torso joint. During this motion, tactile measurements are continuously
monitored. We interpret a spike in tactile sensation as making contact with the table. The torso
controller is then signaled to halt execution. Finally, the object is released by opening the gripper and
moving the torso upward again.

Object pose correction estimation with tactile sensing

As motivated previously, the key component for stable object placing is the estimation of the object
placing frame w.r.t. the gripper frame (RG

O′). According to this transformation, the object is re-
oriented prior to placing. However, determining this quantity is difficult, as the object is handed
over in an unknown pose, it is occluded by the gripper, and herein we also do not assume any prior
knowledge about the object type. We, therefore, propose estimating RG

O′ from the signals of the
tactile sensors inside the gripper. The Myrmex tactile data is represented as a 16 × 16 matrix of
normal force readings that are normalized in [0, 1]. Fig. 5 shows a visualization of the tactile readings
from the right and left sensors while holding an object. Next, we, first, introduce our proposed
Neural Network, and, subsequently, explain line-fitting baselines for recovering RG

O′ from the tactile
readings.

Since we require a solution that is flexible enough to deal with different objects, that can handle the
sensors’ noise, and convert the high-dimensional readings into a signal suitable for reorienting the
objects, we propose to employ a neural network. The general network architecture is visualized in
Fig. 1b. To process the tactile data, we first use two convolutional layers with a 3× 3 kernel each,
and 16 and 32 output channels respectively. The output of the last convolutional layer is then fed to
a Multilayer Perceptron (MLP) consisting of two hidden layers with 128 neurons each and ReLU
activation functions, followed by a dropout layer with a dropout probability of p = 0.2. F/T data can



Tactile PlaceNet F/T PlaceNet Tactile + F/T PlaceNet

Test Loss (rad) 0.03 0.43 0.05

Table 3: Training results of networks with different input sensor modalities. We report the lowest test loss
averaged over 10 batches.

be optionally fed into the MLP as an additional input signal, which is concatenated with the tactile
features.

To smoothly represent the rotation matrix in the output layer, we use the 6D representation comprising
the first two columns of RG

O′ , as introduced in Zhou et al. [2019] and has been shown to exhibit
superior properties for learning in SO(3). Each estimate is then converted into an SO(3) rotation
matrix for the computation of the loss, which is defined as

L(R, z⃗gtp ) = cos−1
(
RW

G R z⃗ · z⃗gtp
)
, (3)

where R = RG
O′ is the quantity of interest and the prediction of the network, and z⃗gtp is the ground

truth measurement of the object’s placing normal in the world frame that is obtained through an
OptiTrack motion capture system. By taking cos−1, the loss lies in the interval [0, π], and can be
interpreted as the angular distance error between predicting z⃗p using the network’s output R and the
ground truth. Note that our loss, contrary to e.g. the geodesic loss from Zhou et al. [2019], does not
consider rotations about the placing normal since those are irrelevant in our problem definition. Table
3 shows the training results, and clearly shows that both PNs with tactile information were able to
precisely estimate the object state, while the F/T-only PN was not.

Line-fitting baselines

To assess whether a data-driven model is required to solve this task robustly and to gauge its
performance compared to other approaches, we introduce two baseline models for comparison. Given
the nature of our sensory data and the goal of finding the object’s main axis within it, line-fitting
methods naturally come to mind. We chose two popular methods from that field, Principal Component
Analysis (PCA) Pearson [1901] and Hough transforms Duda and Hart [1972]. As both methods work
on individual images, we combine the two sensor readings into one frame by flipping one of the
sensor images to account for symmetry. Therefore, the input to the baselines contains the information
of both sensors. This should increase robustness as the sensors might be differently affected by noise.

For the PCA baseline, we treat the force readings as a bi-variate, uni-modal Gaussian, and estimate
its mean, standard deviations, and covariance matrix C. To obtain the orientation of the object’s main
axis, we calculate the first principal component of C using PCA. Assuming that an object’s main
axis lies along its largest grasping surface, the first principal component should constitute a decent
estimation for said axis. We then calculate the angle of the line relative to the sensor and transform it
into the rotation RG

O′ , allowing us to generate a corrective motion that aligns the objects.

Hough transform is a common tool in image processing for finding lines in images. Typically, a
raw input image undergoes some preprocessing where edges are extracted and finally, the Hough
transform is applied to the resulting binary image. Empirically, we have found the Hough transform
to show better performance if we simply create a binary image by assigning a value of 1 to taxels
with a force above a noise threshold and 0 otherwise. We only consider the resulting line with the
most votes (the most confident estimate). Lines are parametrized by the angle ψ between the x-axis
and a line normal that intersects the origin and the distance to the origin of said normal. From ψ, we
calculate the angle between the x-axis and the line itself ϕ = π − ψ and again calculate RG

O′ as with
the other baseline.

Model trials and visualizations

Fig. 6 shows placing trials of the box-like Tabasco object, where the tactile-only model successfully
placed the object whereas both classical models’ predictions led to failed placements. In Fig. 6(b),
the normalized sensor image is shown which is used as input for PCA and Hough and serves well for
visualization purposes as well. Each taxel value is normalized between 0 (= no force) and 1 (= highest
measurable force), and then colorized accordingly. Then, the ground truth data from OptiTrack and



Figure 6: Placement sequence comparing the tactile-only PlaceNet (PN) with the baselines. The PN performed
best with an angular error of 0.11 and placed Tabasco correctly, while Hough and PCA both failed with estimation
errors of 0.34 and 0.91 respectively. (b) depicts the raw, normalized force readings for each taxel along with
each model’s prediction of the object’s placing normal and the ground -truth obtained from OptiTrack.

the model output from the performing network and from the two baselines are superimposed over the
resulting image. It is clear that the tactile-only PN was able to predict the object state precise enough
to perform a successful placement (see Fig. 6(c)), while the most accurate baseline estimate (in this
case, from Hough), was not good enough for the object to be placed stably (see Fig. 6(d)).
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