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Abstract
In the evolving landscape of robotics and automation, the application of touch
processing is crucial, particularly in learning to execute intricate tasks like in-
sertion. However, existing works focusing on tactile methods for insertion tasks
predominantly rely on sensor data and do not utilize the rich insights provided by
human tactile feedback. For utilizing human sensations, methodologies related to
learning from humans predominantly leverage visual feedback, often overlooking
the invaluable tactile insights that humans inherently employ to finish complex ma-
nipulations. Addressing this gap, we introduce "MimicTouch", a novel framework
that mimics a human’s tactile-guided control strategy. In this framework, we ini-
tially collect multi-modal tactile datasets from human demonstrators, incorporating
human tactile-guided control strategies for task completion. The subsequent step
involves instructing robots through imitation learning using multi-modal sensor
data and retargeted human motions. To further mitigate the embodiment gap be-
tween humans and robots, we employ online residual reinforcement learning on
the physical robot. Through comprehensive experiments, we validate the safety of
MimicTouch in transferring a latent policy learned through imitation learning from
human to robot. This ongoing work will pave the way for a broader spectrum of
tactile-guided robotic applications.

1 Introduction
In the field of robotics and automation, executing intricate tasks like insertion is notably challenging
due to dynamic interactions among objects. As a result, a minor execution error can lead to significant
task failure, emphasizing the need for adaptive insertion mechanisms with real-time feedback. Many
methods, including NVIDIA’s "IndustReal" [1] system, have predominantly relied on vision-based
solutions [2, 3]. NVIDIA’s approach achieves success rates of up to 99.2% in transferring assembly
tasks learned in simulations to real-world applications with their customized simulator "Factory" [4].
However, these methods may be limited in environments with compromised visual feedback due to
occlusions or varying lighting conditions.

In contrast, humans exhibit innate fine-grained manipulation skills through tactile sensing, allowing
for successful insertions by solely using tactile sensations to assess alignment, pose, and force,
even without visual input [5]. Motivated by human capabilities, recent studies have explored tactile
feedback for complex contact-rich tasks. One combines various sensory modalities in learning from
demonstrations [6, 7, 8], and the other employs reinforcement learning (RL) to model insertion tasks
[9, 10, 11, 12]. While these studies recognize the significance of tactile feedback, they predominantly
rely on robot teleoperation [8, 13, 14] data guided by human visual feedback or pure RL method,
which might not utilize human’s tactile-guided control strategy.

Learning from human demonstrations has been a long-standing research topic. One particular
challenge comes from the embodiment gap, which refers to the morphology disparity between
humans and robots. There are two primary methodologies have been developed in utilizing human
visual feedback. The first, which involves hybrid datasets, combines human data and teleoperation
data to provide a holistic training set [15, 16]. The second is reinforcement learning (RL) fine-
tuning [17, 18, 19, 20], which refines pre-trained models through online RL. However, the human
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Figure 1: Illustration of our MimicTouch Framework. In part (a), the multi-modal (tactile + audio)
tactile feedback is collected during human demonstrations. In part (b), their representation will be
learned. In part (c), a latent policy will be learned by Imitation Learning. In part (d), the latent policy
will be refined through online residual reinforcement learning on a physical robot.

tactile modality remains relatively uncharted. Furthermore, learning a human’s tactile-guided control
strategy presents distinct challenges, such as the pronounced embodiment gap in the tactile domain.
Given the potential benefits of utilizing human’s control strategy guided by tactile feedback, there is
a great motivation to solve those challenges and let robots harness human’s tactile-guided control
strategy.

In response, we introduce "MimicTouch" (in Fig. 1), a novel framework that capitalizes on multi-
modal tactile feedback derived from human demonstrations to learn a human’s tactile-guided control
strategy. The key components of the MimicTouch framework include: 1). A human-centric data
collection system, designed to collect multi-modal (tactile + audio) tactile data to learn human’s
tactile-guided control strategy, 2). A representation learning model that can extract task-specific
features and improve the following imitation learning efficiency, 3). A non-parametric imitation
learning to learn a latent policy from human demonstrations, 4). A verification tool to evaluate the
latent policy in the simulator. 5). An online residual reinforcement learning method learns a residual
policy for fine-tuning the latent policy on a physical robot. To evaluate our framework, the ablation
study demonstrates enhanced learning efficiency by integrating multi-modal tactile feedback. Also,
by employing latent policy evaluation, we show deployable policy transfer to the physical robot. In
future work, we will fine-tune our latent policy using online RL and conduct experiments on the
physical robot.

2 Methodology
MimicTouch operates through three distinct phases: 1). Representation learning from task-specific
human interactions (see Appendix. C), 2). Non-parametric imitation learning with demonstrations
from human’s tactile-guided control strategy (see Appendix. D), and 3). Online residual reinforcement
learning refinement (see Appendix. E). Initially, we use our human data collection system (see
Appendix. B) to gather a specialized multi-modal tactile dataset during insertion tasks. Then,
we apply two self-supervised learning models to this dataset, producing optimized representation
encoders for both tactile and audio data. During the next phase, we leverage imitation learning with
multi-modal tactile feedback sourced from our data collection system, aiming to derive a latent policy.
Further, we evaluate the safety of this latent policy in a simulated environment (see Sec. 2). The final
phase involves the fine-tuning of this latent policy through online residual reinforcement learning.
The diagram of this framework is shown in Fig. 1

Data Collection System We design a human-centric data collection system (part (a) in Fig. 1),
which simultaneously collects the pose of human fingertips, tactile images, and audio signals when
humans use their tactile feedback to complete the insertion tasks. Our advanced data collection
system is equipped with specialized hardware for accurate data capture (Shown in Fig. 1). Details of
the Hardware Settings and the Fingertips Pose Tracking System are shown in Appendix. B.
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Pre-training Tactile Representation To extract low-dimensional useful representations from the
demonstration data, we employ SSL, which tries to learn a low-dimensional representation from
high-dimensional observations. Specifically, we employ the Bootstrap Your Own Latent (BYOL)
[21] for tactile images and BYOL for audio (BYOL-A) for audio data [22], which have demonstrated
enhanced performance in computer vision [21], audio representation [22], and robotics [8, 13, 23]
domains. Details about BYOL and BYOL-A are shown in Appendix. C.

Leveraging BYOL and BYOL-A, we generate two 1× 2048 representation vectors for each tactile
image and audio segment. Details are shown in Appendix. C

Learning Latent Policy from Human Demonstration To learn a latent policy from human
demonstration, we propose to use the non-parametric imitation learning algorithm to ensure the safety
of transferring.

To utilize data from human demonstrations in physical robots, we need to integrate data processing.
It consists of three steps: 1). Using data alignment to ensure the tactile images, audio segments, and
pose of human fingertips are aligned in the same time stamps. 2). Retargeting the pose of human
fingertips into the pose of the robot end-effector. 3). Post-processing the retargeted data for smooth
execution. Details are shown in Appendix. D.

Our action space is defined by the 6D delta pose transformation of the robot end-effector, encompass-
ing a delta position and a delta Euler angle. Given the inherent challenges of ensuring safety during the
transition from human to robot, coupled with the complexity of high-dimensional action and observa-
tion spaces, traditional parametric methods often face challenges. These challenges arise from issues
such as covariance shifts and the intricacies of learning effective policies in scenarios with limited data.
To address these challenges, we employ the nearest neighbors-based imitation learning algorithm
(VINN) [24], capitalizing on our collected demonstrations. Details are shown in Appendix. D.

Figure 2: This figure shows our insertion task in both the physical
robot environment and simulated environment, which are the same
table-top settings containing a GelSight Mini fixture, a cylinder
object, and an insertion base.

Evaluation in Simulation
Since the current simulator
is not able to generate high-
quality tactile images and au-
dio data, we need to do the
RL fine-tuning directly on a
physical robot. Hence, it is
important to make sure that
the latent policy is deployable
to the physical robot environ-
ment. To validate the safe
transferring of the learned la-
tent policies on the physical
robot, we conduct evaluations within a simulated setting. We employ the Robosuite simulation
framework [25], underpinned by the Mujoco Physics Engine [26], to simulate the real-world insertion
task. The setup is shown in Fig. 2. Details are shown in Appendix. F.

Online Reinforcement Learning Fine-tuning Although we have learned a latent policy from
human demonstration, this latent policy might not guarantee task success when deployed on the
physical robot. This is partially due to morphology differences between the human and robot end-
effector, as well as the inaccurate tracking of the AruCo Marker. Therefore, we aim to further explore
online reinforcement learning to enhance the latent policy. However, we cannot directly fine-tune the
latent policy because it is learned through a non-parametric imitation learning manner. As a result,
we propose to learn a residual policy to solve the embodiment gap issue through RL interactions (part
(d) of Fig. 1). While the specifics of the implementation are still under consideration, we outline
three potential methods that we believe hold promise in Appendix. E.

3 Experiments

In this section, we present the experiments with our MimicTouch framework.

Descriptions of Manipulation Tasks We evaluate our model in two real-world insertion tasks that
require precise tactile feedback. The first one is the Long-horizon Insertion Task. Starting from an
initial position, the robot’s objective is to navigate to the top of the insertion base and complete the
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Figure 3: This figure shows our data collection process (first row), the latent policy shown in the
simulated environment (second row), and the latent policy shown in the physical robot (third row).

insertion task. One example is shown in Fig. 3. The second one is the Dense Packing. To accomplish
this task, the robot is required to initially relocate the object to the available space within the box with
some obstacles, and ultimately execute the insertion to the box accurately. One example is shown in
Fig. 4. Details of the setups on both tasks are shown in Appendix. G.

Latent Policy Evaluation In this section, we evaluate the latent policy learned from human
demonstration. Using the mean square error loss (MSE Loss, defined in Appendix. H), we can
evaluate the difference between the generated action sequences and the ground truth action sequences.
The results are shown in Table. 1, which shows that our model can generate a latent policy for safe
execution. Implementation details and analysis are shown in Appendix. H. The example visualized in
the simulation is shown in Fig. 3.

Ablation Study: Do Multi-Modal Tactile Feedback Improve the Performance? We evaluate the
performance of our multi-modal tactile feedback with ablation study. The results are shown in Table.
2, which shows that our multi-modal tactile feedback outperforms single modality. Details are shown
in Appendix. I.

Physical Robot Experiment In this section, we want to evaluate our approach to the physical robot.
The Robot Setup and Calibration are shown in Appendix. J. The setup is shown in Fig. 2.

Firstly, we execute the latent policy on the physical robot. An example is shown in Fig. 3. Currently,
we only execute the rollout actions generated from the latent policy in the emulated physical robot
environment (shown in Appendix. H) on the physical robot. In the future, we will collect real-time
tactile images and audio signals as the input of the latent policy on the physical robot.

According to the example shown in Fig. 3, we can find that it is difficult to complete the task on the
physical robot using the latent policy. This is partially due to morphology differences between the
human and robot end-effector, as well as the inaccurate tracking of the AruCo Marker. Hence, we
need to introduce online fine-tuning to mitigate this issue.

Currently, we are conducting online RL fine-tuning and evaluating our framework with some baseline
models (See Appendix. J) and aim to show more promising results by the time of this workshop.

4 Conclusion & Future Work
At present, this progressive project has achieved substantial advancements in the secure transference
of human’s tactile-guided control strategies to physical robots, with evaluations affirming the efficacy
of our proposed multi-modal tactile feedback in enhancing model performance. However, since this
is an ongoing project, we acknowledge the limitations such as the latent policy directly generated
from human demonstration might not achieve the task success on the physical robot. The next phase
of this project will focus on integrating online residual RL to overcome the identified limitations,
and we intend to evaluate the overall performance of our proposed approach with other baseline
methods. Additionally, we plan to conduct user studies to collect a diverse range of data from various
individuals. Built upon our framework, people could explore other potential applications in learning
a tactile-guided control strategy for different contact-rich challenging scenes without visual feedback.
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learning with non-parametric regression. In Proceedings of 2012 IEEE International Conference
on Automation, Quality and Testing, Robotics, pages 91–96, 2012.

[49] Gelsight mini. https://www.gelsight.com/gelsightmini/.

[50] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas, and Manuel J.
Marín-Jiménez. Automatic generation and detection of highly reliable fiducial markers under
occlusion. Pattern Recognit., 47:2280–2292, 2014.

[51] Manish Sinha Kanishke Gamagedara, Jean Gressmann. aruco-markers. https://github.
com/fdcl-gwu/aruco-markers.git, 2018.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

7

https://www.gelsight.com/gelsightmini/
https://github.com/fdcl-gwu/aruco-markers.git
https://github.com/fdcl-gwu/aruco-markers.git


Appendices

A Related Work

In this section, we contextualize our contributions within relevant sub-fields.

A.1 Multi-Modal Tactile Sensing

Vision-based tactile sensing is integral to robotic manipulation, with sensors equipped with internal
cameras offering high-resolution data on local contact geometry and frictional properties [27, 28,
29, 30]. Through the application of tactile sensing, several learning-based methodologies have been
developed for a range of manipulation tasks.

Various studies have incorporated imitation learning algorithms with tactile sensing in multi-modal
perception to accomplish intricate tasks such as insertion, dense packing, pouring, and other dexterous
manipulation tasks [6, 7, 8]. On the other hand, some researchers have focused on employing tactile
feedback solely as the reward function of reinforcement learning, successfully completing tasks like
insertion, in-hand rotation, and multi-material object cutting without visual feedback [9, 10, 11].
Out of learning-based methodologies, tactile sensing is also widely used in shape reconstruction
[31, 32, 33], grasping [34, 35, 36, 37], and dense packing [30]. Nonetheless, the vision-based tactile
sensor may not fully represent the features of tactile sensing.

Audio-based tactile sensors, e.g. contact microphones, have been demonstrated to be another effective
modality in robotics, such as robot manipulation [23], classifying object instances [38, 39], modeling
dynamics [40, 41], and learning food embedding [42]. Such data can emulate nerve endings within
human skin that detect vibrations during tactile interactions, enhancing human’s perception of surface
roughness. Furthermore, it facilitates the detection of collisions and slippages between objects [41].
Incorporating this into multi-modal tactile sensing can yield tactile feedback more akin to human
sensations, which is helpful for learning a human’s tactile-guided control strategy.

A.2 Learning from Human Demonstration

Leveraging human demonstration offers an avenue to leverage human’s tactile-guided control strat-
egy. The domain of learning from human demonstrations, especially from videos [43], has been
extensively researched. Given the ease of collecting human demonstrations, the learning process is
considerably less time-intensive and more diverse compared to learning from teleoperation data and
pure reinforcement learning.

Two prominent methods include hybrid learning from both human and robot teleoperation [15, 16]
and model fine-tuning using reinforcement learning [12, 17, 18, 19, 20]. Both methods effectively
address the embodiment gap challenges when transitioning from human to robot. In this study, we
focus on leveraging genuine human’s tactile-guided control strategy, eschewing robot teleoperation
data, and opting for reinforcement learning-based fine-tuning.

A.3 Imitation Learning

For the purpose of our study, it is imperative to employ an imitation learning algorithm to derive a
latent policy from human demonstrations. Imitation learning can be bifurcated into two categories:
parametric [44, 45, 46] and non-parametric imitation learning [24, 47, 48]. Parametric imitation
learning algorithms, which rely on computing a multitude of related parameters, offer superior
generalizability. However, they are also prone to a higher covariance shift, making them potentially
hazardous when applied directly to out-of-domain executions. In contrast, non-parametric imitation
learning algorithms derive insights solely from the observations and trajectories in the dataset, devoid
of any additional parameters. While they may be short of generalizability, they offer a safer alternative
to their parametric counterparts. Considering our objective of safely learning human’s tactile-guided
strategy, we have opted for the non-parametric VINN algorithm [24].

8



B Data Collection System

Hardware Our data collection system is equipped with specialized hardware for data capture
(shown in Fig. 1). The data encompasses three elements: human fingertip pose, which will be
retargeted to the pose of the robot end-effector; tactile images, which indicate object-sensor contact;
and audio signals, which mimic the vibrations detected by deep skin nerve endings. We use the
RealSense camera for fingertip pose tracking, offering a 60 Hz stream at a 320x240-pixel resolution.
The GelSight Mini [49], a compact vision-based tactile sensor, facilitates tactile imaging with a 30
Hz stream at 400x300 pixels. This sensor is conveniently mounted onto human fingertips using a
custom fixture (refer to Fig. 1). Audio data is captured using the HOYUJI TD-11 piezo-electric
contact microphone with a 44.1kHz sampling rate. Due to the fact that the robot’s inherent noise
differs from that of humans, the microphone is placed at the base of our insertion task (shown in
Fig. 1) instead of the end-effector or human fingertips, ensuring consistent audio data collection. For
our insertion tasks in Appendix. G, the vibration from collisions and slippery will be only helpful
to robot policy during the final insertion process when physical contact happens but not during the
previous contact-free process. Hence, installing it on the base represents a part of multi-modal tactile
sensing and helps learn human’s tactile-guided control strategy.

Fingertips Pose Tracking To track the human fingertip motions, we put an AruCo marker [50] on
our custom fixture to track human fingertip movements. Positioned in a tabletop view, the RealSense
camera captures the AruCo marker’s pose. Using an open-source library [51], the marker’s 6D
pose was tracked at 60Hz. These human fingertip poses are subsequently mapped to the robot
end-effector’s pose, serving as vital input for the imitation learning process after retargeting and
post-processing (shown in Appendix. D).

C Pre-training Tactile Representation

Data Collection For self-supervised learning (SSL) training, we collect task-specific tactile-audio
data obtained from human’s tactile-guided insertion tasks shown in the Appendix. G. Our dataset
encompasses success, failed, and sub-optimal instances. Each task yields tactile images at 30 Hz and
audio data sampled at 44.1kHz, segmented at 2Hz. In total, we collected 9,157 tactile images and
1,000 audio segments for SSL training.

Representation Learning To extract low-dimensional useful representations from the play data,
we employ SSL, which tries to learn a low-dimensional representation from high-dimensional
observations. Specifically, we employ the Bootstrap Your Own Latent (BYOL) [21] for tactile images
and BYOL for audio (BYOL-A) for audio data [22], which have demonstrated enhanced performance
in computer vision [21], audio representation [22], and robotics [8, 13, 23] domains.

BYOL [21] generates two augmented views, v ∆
= t(x) and v′

∆
= t′(x), from a given x by applying

image augmentations t ∼ T and t′ ∼ T ′ respectively, where T and T ′ represent distinct aug-
mentation distributions. The architecture of BYOL comprises a primary encoder fθ and a target
encoder fξ , where the latter being an exponential moving average of the former. Given the augmented
views v and v′, they are processed to yield representations y and y′. These representations are
subsequently transformed by projectors gθ and gξ to produce higher-dimensional vectors z and z′.
The primary encoder and its associated projector are designed to predict the output from the target
projector, resulting in qθ(zθ) and sg(z′ξ). The model’s output consists of l2-normalized versions of
these predictions, which are trained using a similarity loss function. Post-training, the encoder fθ is
utilized for feature extraction from observations.

To utilize BYOL in tactile images, we scale the tactile image up to 256x256 to work with standard
image encoders. We use the ResNet [52] architecture, also starting with pre-trained weights. Unlike
SSL techniques in visual images, we only apply the Gaussian blur and small center-resized crop
augmentations, since other augmentations such as color jitter and grayscale would violate the
assumption that augmentations do not change the tactile signal significantly. For each input, the
trained model will generate a 1× 2048 representation vector.

BYOL-A [22] is an extended version of BYOL to audio representation learning, processing log-scaled
mel-spectrograms through a specialized augmentation module. To utilize BYOL-A in our audio data,
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we down-sampled signals from 44.1kHz to 16kHz, with a window size of 64 ms, a hop size of 10 ms,
and mel-spaced frequency bins F = 64 in the range 60–7,800 Hz. Then, the Pre-Normalization step
stabilizes the input audio for subsequent augmentations. Once normalized, the Mixup step introduces
contrasts in the audio’s background, defined by the log-mixup-exp formula:

x̃i = log((1− λ) exp(xi) + λ exp(xk))

where xk is a mixing counterpart and λ is a ratio from a uniform distribution. The next one is the
RRC block, an augmentation technique, that captures content details and emulates pitch shifts and
time stretches. For each input, the trained model will generate a 1× 2048 representation vector.

D Learning Latent Policy from Human Demonstration

D.1 Data Processing

To utilize data from the human demonstrations in learning a robot policy, we need to integrate data
processing.

Data Alignment To ensure synchronization across our sensors, we address the disparate sampling
rates of the RealSense, tactile sensor, and audio sensor, which are 60Hz, 30Hz, and 2Hz, respectively.
Given the continuous nature of the insertion tasks, a 2Hz sampling rate is insufficient. We downsample
the pose and tactile image data to 5Hz. For audio, rather than collecting discrete 0.5s segments,
we only capture extended audio data for every 0.2s, resulting in a 0.3s overlap between every two
neighboring audio segments. Finally, we obtain one human fingertip pose, one tactile image, and one
0.5s audio segment at 5Hz.

Pose retargeting The 6D human fingertip poses that are extracted from the AruCo marker encom-
pass 3D positions along with rotation vectors. Then, we transform these rotation vectors into Euler
angles. The transformed poses function as desired robot end-effector poses.

Post Processing Given the inherent noise and occasional outliers in the poses obtained from the
RealSense and AruCo markers, it is imperative to implement post-processing techniques to ensure
the quality and smoothness of the trajectories. For each pose sequence, outliers are detected by
sorting the values of each delta transformation. The Interquartile Range (IQR) method is employed
to establish the upper and lower bounds, which are then used to identify outliers. The IQR is defined
as: IQR = Q3 − Q1 where Q3 and Q1 are the third and first quartiles, respectively. Outliers are
replaced using a median filter with a window size of 3. To enhance the temporal consistency of the
estimated hand and object pose, a digital low-pass filter is applied to eliminate high-frequency noise.
Specifically, the filter has a sampling frequency of 5Hz and a cutoff frequency of 2Hz. The low-pass
filter can be represented as:H(f) = 1

1+( f
fc
)
2 where f is the sampling frequency and fc is the cutoff

frequency.

D.2 Non-Parametric Imitation Learning

The observations and actions in the collected demonstrations are shown as (oTi , o
A
i , o

e
i , ai) at the i-th

step, where the oTi is the tactile image, the oAi is the audio segment, the oei is the robot end-effector
pose, and ai is the action. Then, we extract tactile and audio features (yTi , y

A
i ) from the observations

using our pre-trained encoders (shown in Appendix. C). These features and the corresponding robot
end-effector pose serve as the input (yTi , y

A
i , o

e
i ) to our model for generating the next action ai+1.

Given the varying scales of these inputs, we apply normalization such that the maximum distance for
each input is unity in the dataset. During testing and experiment, for a given real-time observation ôt,
we compute the features (ŷTt , ŷ

A
t , ô

e
t ). Then, we use these features to identify the data point in the

dataset with the minimal aggregate distance, and subsequently execute the associated action.
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E Online Reinforcement Learning Fine-tuning

E.1 Residual RL via Expert-Aligned Rewards

In recent research endeavors, a promising approach involves fine-tuning the latent policy through
real-world interactions, aiming to align it with an expert policy [12, 19, 20]. These works employ
optimal transport-based reinforcement learning to fine-tune the latent policy derived from expert data
with expert-aligned rewards. Experimental results suggest that this technique can efficiently generate
a robust policy, adaptable to analogous tasks across diverse environments. This is achieved with
minimal training duration, even when the latent policy is derived from a small dataset.

Such algorithms demonstrate the capacity to efficiently learn policies that are generalizable across
similar tasks in diverse environments. A salient feature of this approach is its emphasis on aligning
the robotic policy with that of experts, ensuring the assimilation of safety-centric policies from these
experts. This safety alignment is important, especially when dealing with out-of-domain datasets.
However, the efficacy of these methods has been primarily validated using the in-domain training data,
which only encompasses configuration gaps from visual imagery. Their applicability to out-of-domain
datasets, especially those with embodiment gaps remains unexplored. Due to the embodiment gap,
the expert policies, which are retargeted from human demonstrations, often prove incompatible with
direct robotic applications. Consequently, the endeavor to align robotic policies with potentially
non-transferable datasets may not effectively address the embodiment gap issue.

E.2 Residual RL via Task-Based Rewards

The task-based rewards represent a prominent methodology for refining the latent policy and facilitat-
ing the completion of insertion tasks. In related studies [9, 10], the authors introduce a tactile-based
feedback insertion policy, utilizing reinforcement learning (RL) to model the insertion process as
an episodic policy alternating between insertion attempts and pose corrections. With experiments
evaluated on the physical robot, those papers show superior performance with RL using task-based
rewards computed from tactile images.

Besides, from the paper [12], we see numerous constraints were introduced to ensure training safety.
In such intricate tasks in Appendix. G, to encourage the RL exploration while incorporating other
safety constraints presents a great challenge. Furthermore, task-based rewards are ideally sparse in
nature. In our task, the robots need to constantly adjust their pose, which is a very continuous motion.
As a result, using sparse rewards might exacerbate training complexities and reduce overall training
efficiency.

E.3 Residual RL via Hybrid Expert-Aligned Rewards and Task-based Rewards

The limitations of either expert-aligned rewards or task-based rewards are shown in Appendix. E,
the hybrid method has been driven by several studies [17, 18]. In those studies, the authors employ
both expert-aligned rewards and task-based rewards to refine the policy generated from human
demonstration. Such a hybrid approach enhances the strengths of both methodologies, facilitating
the extraction of task-based rewards to aid in task completion while concurrently upholding training
safety standards. This potential approach is shown in part (d) of Fig. 1.

The hybrid strategy has been proven that it can utilize both advantages of different rewards with
human visual feedback. It not only can ensure safe training and fast fine-tuning but also can solve
the embodied gap. We hope that this method can also play a good role in fine-tuning the human
demonstration with tactile feedback.

F Simulation Setup

As depicted in Fig. 2, a tabletop manipulation setup is established in the simulation to replicate
the insertion task. The end-effector’s fingers are replaced with our custom fixture designed for
the GelSight Mini. The object is fixed in proximity to the end-effector to prevent slippage during
interactions. Given Mujoco’s constraint of supporting only convex objects, we construct a base
with an insertion hole using four small cuboids. This setup allows us to execute the latent policy
seamlessly. Details about latent policy and safety evaluations are shown in Appendix. H.
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G Decriptions of Manipulation Tasks

To evaluate our model in two real-world insertion tasks that require precise tactile feedback.

Long-horizon Insertion Task We 3D print three objects: a cylinder, a cuboid, and an elliptical
cylinder with their hole base as shown in Fig. 2. We set up the task environments for both data
collection in Appendix. B and physical robot experiments (an example shown in Fig. 3). Starting
from an initial position, the robot’s objective is to move to the top of the insertion base and complete
the insertion task. This task is notably more challenging than standard insertion tasks. It requires
the robot to emulate a blindfolded human who needs to locate the insertion point and continuously
adjust the object’s posture until finishing insertion. In contrast, traditional insertion tasks typically
proceed without considering pose variations and consistently keep the object perpendicular to the
table. For the data collection, we attempt to blindfold and insert the object with our tactile feedback
to collect a dataset to learn a human’s tactile-guided control strategy. An example is shown in Fig. 3.

Figure 4: An example for the dense packing task.

Dense Packing The objective of this task is
to accurately insert an object into a constrained
space within a nearly saturated box. To accom-
plish this goal, the robot is required to initially
relocate the object from its starting position to
a point above the box, subsequently navigate
around obstacles, identify the available space
within the box, and ultimately execute the inser-
tion accurately. We conduct two variations of
dense packing: one employing 3D printed ob-
jects, facilitating a more controlled examination
of each modality’s role in this task, and another
utilizing diverse real-world objects. An example
is shown in Fig. 4. We will implement this task after evaluating the long-horizon insertion task.

H Latent Policy Evaluation

In this section, we evaluate the latent policy learned from the human demonstration. Using the mean
square error loss (MSE Loss), we can evaluate the difference between the generated actions and the
ground truth actions.

Emulate Physical Robot Environment Using the data collection system (Appendix. B), we collect
20 noisy-free data sequences with the trained encoder (Appendix. C) as the datasets to learn the latent
policy. For policy evaluation, we gather another 10 data sequences with random noise, which helps to
emulate the physical environments in the real world.

To emulate the physical robot environment, we introduce random noise to those 10 unseen data
sequences. The robot state space input undergoes a random position noise within the range
[−3cm,+3cm] for each axis. Gaussian noise, denoted as N (0, σ), is added to both the tactile
image and audio signal. In this notation, N (0, σ) signifies a Gaussian distribution with a mean of 0
and a standard deviation of σ. For tactile images, the noise affects pixel values in the range [0, 255],
while for audio data, it impacts signal values in the range [0, 1]. Given their distinct ranges, we apply
Gaussian noise with standard deviations of σ = 100 for tactile images and σ = 0.4 for audio data.

Generate Action Sequences To evaluate the latent policy with those unseen data sequences with
noises, we follow these steps: 1). For the first initial pose, we use the collected pose, tactile image,
and audio data, all subjected to noise. 2). For subsequent poses, our VINN model is employed to
generate a new pose utilizing the pose and sensor data from the preceding state. Then, we add noises
on the newly synthesized pose and the multi-modal tactile data derived from the original unseen
action sequence corresponding to the current time step. The synthesized pose and tactile data with
noises will be used for generating the next pose. 3). After obtaining a trained sequence with the same
length as the original unseen data sequence, we finish the generation of action sequences.
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MSE Loss For calculating the MSE Loss between two action sequences, we need to normalize the
actions’ translation vectors and rotation vectors since they have different scales. Then, we calculate
the average MSE Loss between each action of these two action sequences. The formula is shown as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Where: yi represents the ground truth action, ŷi represents the generated action, and n is the number
of all action steps.

Evaluate the Latent Policy To assess the efficacy and safety of the latent policy, we evaluate the
actions generated by the latent policy with the data sequence in the emulated simulated environment
using the MSE Loss (reported in Table. 1) between the generated action sequence and the ground
truth action sequence.

We test three modes of generating the actions from the latent policy: 1). Use the recorded observation
in the unseen data sequence to generate the next action, 2). Use the rollout robot state and the recorded
sensor data to generate the next action, and 3). Use the noisy rollout robot states and noisy recorded
sensor data to generate the next action (same method as Appendix. H shown above). From the table.
1, since all of those MSE Loss are similarly small, it shows that the latent policy can generate actions
that are similar to the ground truth even with random noise. This indicates that the policy would not
generate risky behaviors for the subsequent online RL fine-tuning on the physical robot.

States Noise MSE Loss
Desired States No 0.14
Current States No 0.21
Current States Yes 0.26

Table 1: Average MSE Loss of 10 action sequences.

Additionally, we visualize the retargeted action sequence and generated action sequence (mode 3) in
the Robosuite simulated environment in Fig. 3, which shows that the rollout poses generated using
VINN are close to the ground-truth retargeted pose.

I Ablation Strudy: Do Multi-Modal Tactile Feedback Improve the
Performance?

In this section, we want to evaluate the performance of our multi-modal tactile embeddings.

Same as the Appendix. H, we evaluate the performance of our multi-modal tactile embeddings with
Mean Square Error of action sequence generated from unseen action sequence collected by humans
with random noises. We evaluate our model with the following baseline models:

• MimicTouch w/o T & A: MimicTouch without tactile or audio embeddings.

• MimicTouch (T): MimicTouch incorporating only tactile embeddings.

• MimicTouch (A) MimicTouch incorporating only audio embeddings.

• MimicTouch (T + A, Ours): MimicTouch incorporating both tactile and audio embeddings.

From Table. 2, we report the MSE Loss between
the generated actions and the ground truth actions.
Without using both tactile images and audio sig-
nals, the MSE loss reaches 0.62, which is much
higher than the others. In the case of using multi-
modal tactile sensing, our approach outperforms
the variants with a single modality.

Models MSE Loss
MimicTouch w/o T & A 0.62
MimicTouch (T) 0.38
MimicTouch (A) 0.48
MimicTouch (T + A, Ours) 0.26

Table 2: Average MSE Loss of 10 action sequences
in the ablation study.
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J Physical Robot Evaluation

Robot Setup All experiments are conducted on a Franka Emika Panda Arm. An inverse kinematics
solver is used to map the 6-DoF Cartesian space displacement commands into the 7-DoF joint actions.
For each task, Cartesian space displacement commands are generated at a policy frequency of 5 Hz,
subsequently mapped by the low-level control loop to force and torque inputs in the robot’s joint
space at 200 Hz.

Calibration Given that our data collection and final experiments occur in disparate scenarios, it’s
crucial to align our human-centric data collection system with the physical robot system. Initially, we
record the distance between the object (starting point) and the base (ending point) within the data
collection system and replicate this setup in the robot environment. Following this, six equidistant
positions between the starting and ending points are identified within both systems. The object is
gripped at these predetermined positions using both hands and the robot’s end-effector, allowing us to
capture the corresponding poses. In this calibration process, the hand poses, denoted as the "Eye" in
the calibration function, are referenced to the camera frame, while the end-effector poses, represented
as the "Hand" in the calibration system, are referenced to the robot frame. Conclusively, we employ
the calibrateHandEye function from OpenCV, using the six captured poses, to calibrate these two
frames (camera frame and robot frame).

Baseline Models We propose to compare our model with the following baselines:

• Tactile-RL [9]: A baseline method uses pure RL policy generated from tactile images.
• Active iSAM [10]: A method estimates the contact line with tactile images, and uses the RL

policy generated from the contact line.
• MimicTouch w/o RL: A variant of our model without RL fine-tuning
• MimicTouch (T): A variant of our model with only vision-based tactile feedback.
• MimicTouch (A): A variant of our model with only audio-based tactile feedback.
• MimicTouch (T+A, Ours)

Notably, since our framework only uses human demonstration guided by tactile feedback, some other
works that use visual feedback and teleoperation such as MULSA [6] are not considered.
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